Atomic and Molecular Collisions:
What are they, and what are they good for?

Igor Bray
John Curtin Distinguished Professor

Director of Mathematical Physics
Head of Physics and Astronomy
Curtin University¹, Perth, Western Australia

¹Top five in Australia for “Physical Sciences and Engineering” and “Mathematics and Computer Science”, Leiden university rankings
Atomic and Molecular Collisions
What are they?

- **Collisions on the atomic scale** go on all around us
- Difficult to calculate:
 - Governed by the Laws of Quantum Mechanics
 - Countably infinite discrete spectrum
 - Uncountably infinite target continuum
 - Charged particles interact to infinite distances
 - Multicentred for proton and positron collisions
- Solved by the Convergent Close-Coupling method
 - Valid at all energies and for all collision processes
 - Over 450 publications with 200 coauthors attracting over 11,000 citations
Atomic and Molecular Collisions

What are they?

- Collisions on the atomic scale go on all around us
- Difficult to calculate:
 - Governed by the Laws of Quantum Mechanics
 - Countably infinite discrete spectrum
 - Uncountably infinite target continuum
 - Charged particles interact to infinite distances
 - Multicentred for proton and positron collisions
- Solved by the Convergent Close-Coupling method
 - Valid at all energies and for all collision processes
 - Over 450 publications with 200 coauthors attracting over 11,000 citations
Collisions on the atomic scale go on all around us

Difficult to calculate:
- Governed by the Laws of Quantum Mechanics
- Countably infinite discrete spectrum
- Uncountably infinite target continuum
- Charged particles interact to infinite distances
- Multicentred for proton and positron collisions

Solved by the Convergent Close-Coupling method
- Valid at all energies and for all collision processes
- Over 450 publications with 200 coauthors attracting over 11,000 citations
The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy
The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy
The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy
The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy
Atomic and Molecular Collisions

What are they good for?

The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy
Atomic and Molecular Collisions

What are they good for?

The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy

Igor Bray <I.Bray@curtin.edu.au>
The primary motivation is to provide accurate collision data for science and industry:

- Fusion research
- Neutral Antimatter creation
- Astrophysics
- Lighting industry
- Medical imaging
- Medical therapy