

Physics 2: Special Relativity *

Igor Bray <I.Bray@curtin.edu.au>

Head, Physics and Astronomy

Curtin University

Perth, Western Australia

Last update: November 17, 2025

<https://atom.curtin.edu.au/SR.pdf>

*<https://atom.curtin.edu.au/ModernPhysics>

Contents

1	Preliminaries	3
2	Introduction	5
3	Galilean Relativity	6
4	Special Relativity	8
4.1	Postulates	8
4.2	Simultaneity	9
4.3	Time dilation	10
4.4	Length contraction	12
4.5	Relativistic Doppler effect	13
5	Lorentz Transformations	15
5.1	Minkowski diagrams	16
5.2	Spacetime and causality	22
5.3	Lorentz velocity addition	24
6	Relativistic Laws of Physics	26
6.1	Momentum, force and energy	26
6.2	Momentum-energy conservation	28

1 Preliminaries

- Einstein: “Education is what is left after everything learned has been forgotten”
 - Leads to transferable skills for success in life
 - Fights 2nd Law of Thermodynamics:
Entropy (S) increases; Information ($I = 1/S$) diminishes (for isolated systems).
 - Study Physics because it
 - is hard; requires courage, builds confidence
 - is evidence-based: “You are not entitled to any opinion, only what you can argue for!”
 - builds knowledge depth; know if don’t know!
 - leads to effective action
 - welcomes failure, builds resilience
 - requires balance of clarity and brevity
 - is motivated by **autonomy, mastery, purpose**
- “Lecturing is the process by which the notes of the lecturer get transferred to the notes of the student bypassing the brains of either!”
 - Harvard’s Eric Mazur’s **interactive teaching**.
 - Please familiarise yourself with the lecture notes before class!

- Importance of clear and succinct notation:

An object moves with velocity $v(t)$ from $x(t_i)$ to $x(t_f)$ with *constant* acceleration a . By definition, $a = [v(t_f) - v(t_i)]/[t_f - t_i]$. Alternatively, $a \equiv \frac{dv}{dt}$

$$\begin{aligned} \int_{t_i}^{t_f} \frac{dv}{dt} dt &= a \int_{t_i}^{t_f} dt \\ v(t) \Big|_{t_i}^{t_f} &= a t \Big|_{t_i}^{t_f} \\ v(t_f) - v(t_i) &= a[t_f - t_i]. \end{aligned} \quad (1.1)$$

Either way, we have

$$v(t_f) = v(t_i) + a[t_f - t_i]. \quad (1.2)$$

However, High Schools (used to!) write $v = u + at$;
four symbols with three mistakes!

1. Show functional dependence, e.g. $v(t)$ to distinguish from constants such as a ,
2. Do not invent new symbols for same concepts, e.g. use $v(t_i) \equiv v_i$ rather than u ,
3. Time difference $t_f - t_i \equiv \Delta t$ is not time t .

Exercise: for $v(t) \equiv \frac{dx}{dt}(t)$, integrate (1.2) to yield

$$\Delta x \equiv x(t_f) - x(t_i) = v(t_i)\Delta t + \frac{1}{2}a\Delta t^2. \quad (1.3)$$

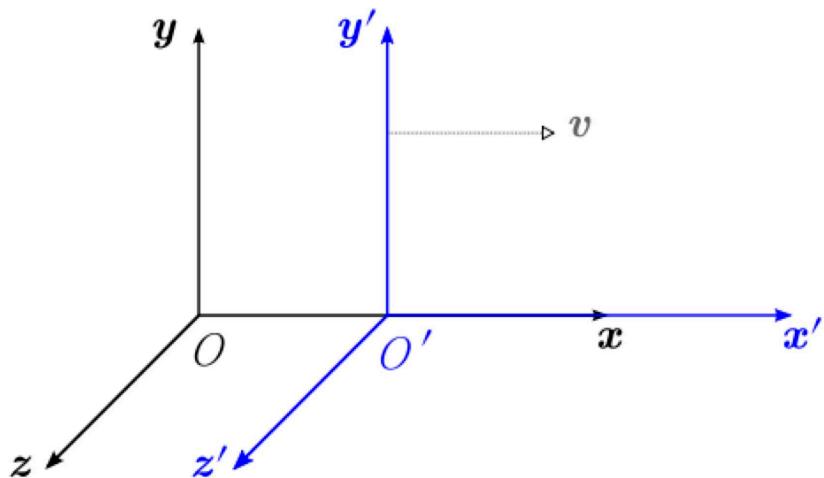
2 Introduction

- Theory of Relativity was published by Einstein in 1905 and deals with motion in the absence of gravity. It became known as **Special Relativity** after **General Relativity**, which includes gravity, was introduced in 1915.
- Special Relativity deals with space and time:
 - What is space? Three dimensions x, y, z . Generally, no preferred direction. Increasingly expanding since the Big Bang. Is space real?
 - What is time? Einstein: “That which is measured by clocks!”. Can write an object’s position (x, y, z) in parametric form $x(t), y(t), z(t)$.
 - Is time real?
 - Does time exist if nothing changes?
 - What was there before The Big Bang?
 - Is there something special about the present moment?
 - What is the difference between the past and the future?
 - Time is inextricably connected to the speed of light; $\Delta t = \Delta x/c$.

3 Galilean Relativity

- Galileo: The laws of mechanics must be the same in all inertial (non-accelerating) frames of reference.
 - Inertial frames $S(t, x, y, z)$ and $S'(t', x', y', z')$ have relative constant velocity $v \equiv \frac{dx}{dt}$ with x -axes aligned and $O' = O$ at $t = 0$. Then

$$\begin{aligned}
 t' &= t \\
 x'(t') &= x(t) - vt \\
 y'(t') &= y(t) \\
 z'(t') &= z(t)
 \end{aligned} \tag{3.1}$$



- Note: v is a vector (\mathbf{v}), use \pm for direction.
- What is the velocity of O relative to O' ?
- If O' is approaching O , is v positive, negative, or can't tell?

- Interchange frames: $S \leftrightarrow S'$ with $v \leftrightarrow -v$.
- An object (ball) in S' has $u_{x'} \equiv \frac{dx'}{dt'} = \frac{dx}{dt} - v$, i.e.

$$u_{x'} = u_x - v, \text{ or } u_x = u_{x'} + v \quad (3.2)$$

are the Galilean velocity addition formulas.

- For general $\mathbf{u}(t)$, $u_{y'}(t') = u_y(t)$ and $u_{z'}(t') = u_z(t)$.
- Under Galilean transformations:
 - Lengths are invariant. Let $x_1 = x_0$, $x_2 = x_0 + l$ then

$$\begin{aligned} l' &= x'_2 - x'_1 \\ &= (x_2 - vt) - (x_1 - vt) \\ &= (x_0 + l - vt) - (x_0 - vt) \\ &= l. \end{aligned}$$

- Forces are invariant since typically depend on the distance between objects $(x_2 - x_1)$.
- Laws of physics are covariant. Conservation of momentum in S also holds in S' . Two masses moving along x stick together after collision:

$$\begin{aligned} m_1 u_1 + m_2 u_2 &= (m_1 + m_2) u_3, \\ m_1(u'_1 + v) + m_2(u'_2 + v) &= (m_1 + m_2)(u'_3 + v), \\ m_1 u'_1 + m_2 u'_2 &= (m_1 + m_2) u'_3. \end{aligned} \quad (3.3)$$

4 Special Relativity

4.1 Postulates

1. All laws of physics have the same form in all inertial (relative velocity v is constant) frames.¹
2. The speed of light, $c \approx 3 \times 10^8$ m/s in a vacuum, is constant.²

- General Relativity adds just one more postulate: In a local neighbourhood gravitational and inertial forces are equivalent.
- The ultimate goal is to reformulate the Laws of Physics in a covariant form: i.e. be invariant under transformation between inertial frames of arbitrary relative velocity $v < c$.

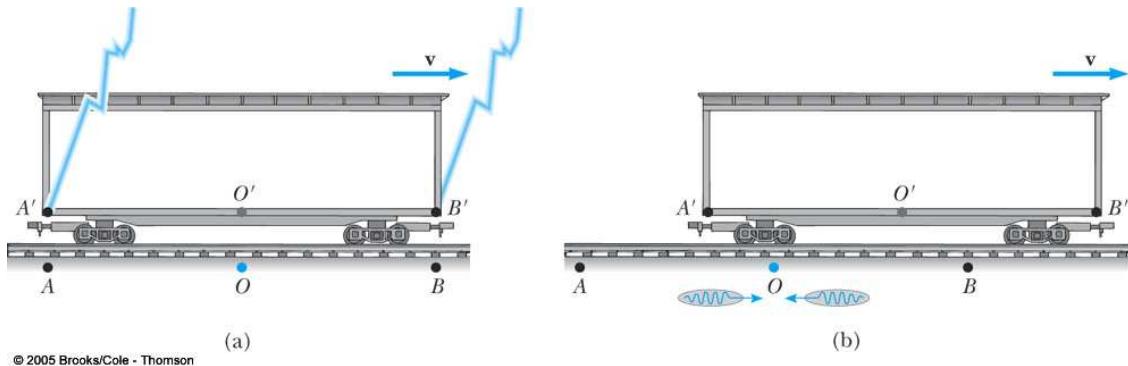
¹Laws of Physics arise from symmetry principles (see 1915 Emmy Noether's theorem), and so do the Laws of societies!

² $c \approx 3$ Å/as, where angstrom Å $\equiv 10^{-10}$ m, and attosecond as $\equiv 10^{-18}$ s.

4.2 Simultaneity

Let us consider the consequences of the 2nd postulate.

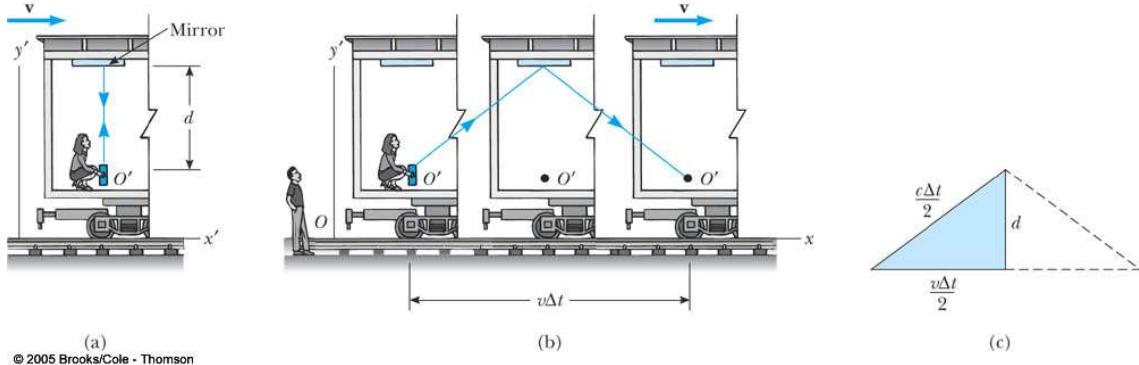
- Simultaneous events in one frame are not simultaneous in a frame moving relative to the first, see figure below.



- O sees events A and B as simultaneous, see (b) above, but O' sees event B' before A' .
- Hence, time intervals are different in frames moving relative to each other.
- This is due to the *finite* speed of light.
- Our intuition is based on essentially an infinite speed of light.

4.3 Time dilation

Consider the figures (a), (b) and (c) below.



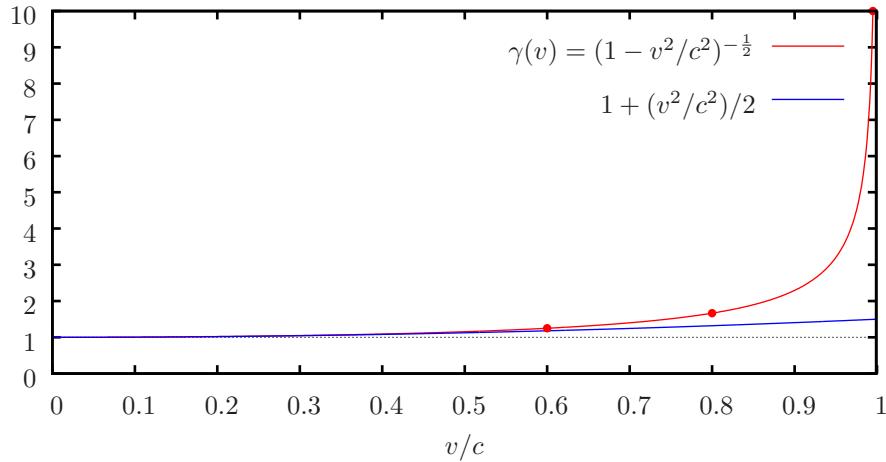
- (a) Within the train frame S' , light travels a distance (up plus down) $c\Delta t' = 2d$, or $d = c\Delta t'/2$.
- (b) In the outside frame S , light travels (up plus down) distance $c\Delta t$ and the horizontal distance $v\Delta t$.
- (c) Hence $(c\Delta t/2)^2 = d^2 + (v\Delta t/2)^2$.

- Substituting $(c\Delta t'/2)^2$ for d^2 , and solving for Δt , leads to $\Delta t = \Delta t'/\sqrt{1 - \frac{v^2}{c^2}}$.
- The time in a frame at rest with the clock is known as the *proper time* $\Delta t_p = \Delta t' \leq \Delta t$ (dilates for moving frames), and so

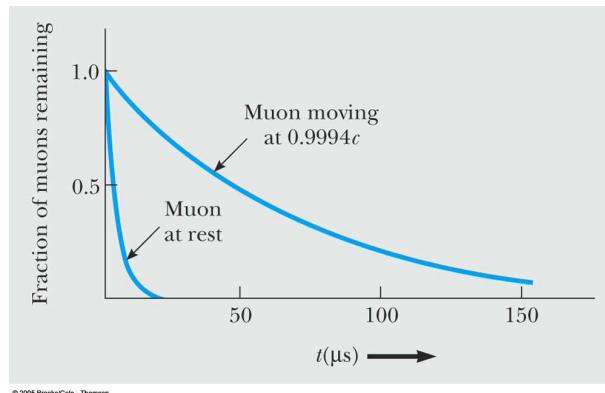
$$\Delta t = \gamma \Delta t_p, \text{ where } \gamma(v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \geq 1. \quad (4.1)$$

- γ and its (two-term) Taylor Series expansion using

$$(1+x)^n \approx 1+nx \text{ for } |x| \ll 1, n \in \mathbb{R} \quad (4.2)$$



- for $\beta = v/c = 3/5 \iff \gamma(v) = 5/4$
- for $\beta = v/c = 4/5 \iff \gamma(v) = 5/3$
- for $\beta = v/c = 0.995 \iff \gamma(v) \approx 10.0$
- Time dilation of moving particles is consistent with experimental observation. Not proof of correctness.



- Sometimes, theory can falsify experiment!

4.4 Length contraction

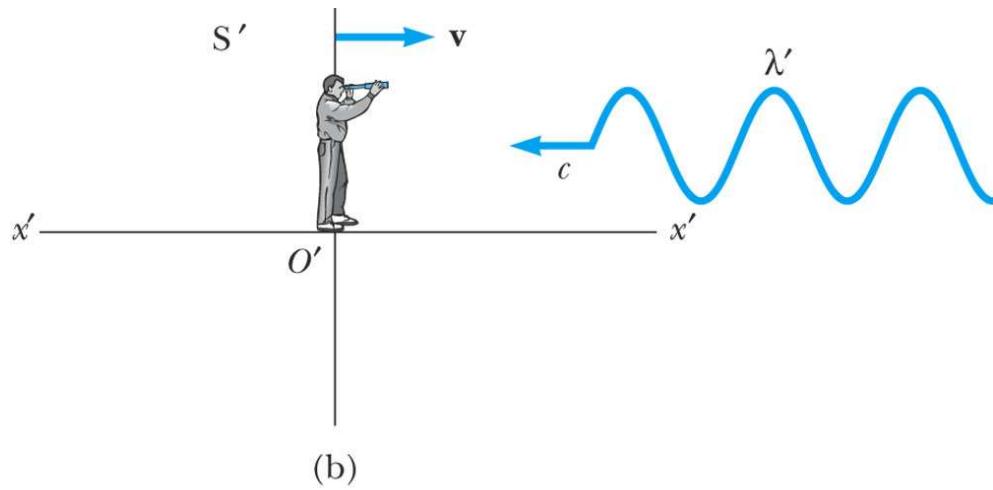
- Define the proper length L_p as the length measured in the rest frame.
- If O' travels $L_p = v\Delta t$ relative to O , see fig. pg. 6, then O travels $-L' = -v\Delta t_p$ relative to O' .
- Have $v = L'/\Delta t_p = L_p/\Delta t$, and using Eq. (4.1)

$$L' = L_p/\gamma. \quad (4.3)$$

- Note $L' \leq L_p$, i.e. lengths contract along the direction of motion.
- Muons of (proper) half-life $\Delta t_p \sim 10^{-6}$ s ($c\Delta t_p = 300$ m) created at 5 km above the Earth, traveling at 0.995 c ($\gamma \approx 10$), reach the surface in large numbers:
 - Muon frame: small half-life, but travels short distance (5,000 m/10=500 m).
 - Earth frame: Ten times longer half-life, so can travel longer (3,000 m) distance.
 - [More details](#) and [YouTube video](#).

4.5 Relativistic Doppler effect

- Stationary observer O (with telescope) receiving light of emitted wavelength λ' from receding O' with velocity v



- The wavelength of light λ is the distance between successive wavefronts and is related to the frequency $f \equiv 1/T$ via $c = f\lambda$, i.e. $\lambda = cT$.
- From perspective of O' , moving away from O at speed v then $T' = \lambda'/(c - v)$, and

$$\begin{aligned}
 \lambda' &= (c - v)T' \\
 &= (c - v)\gamma T \\
 &= \frac{(c - v)}{\sqrt{1 - \frac{v^2}{c^2}}} \frac{\lambda}{c}
 \end{aligned}$$

$$= \sqrt{\frac{1 - \frac{v}{c}}{1 + \frac{v}{c}}} \lambda, \quad (4.4)$$

or for frequencies $f' = f_s$ (source) have

$$\frac{f_s}{f} = \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}}. \quad (4.5)$$

- Redshift $z = (f_s - f)/f$

$$z = \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}} - 1 \approx \frac{v}{c} \text{ for } v \ll c, \quad (4.6)$$

where we used the [Taylor Series](#) expansion (4.2).

- Hence have increased f (blue-shift, $z < 0$) for approaching ($v < 0$) light sources, and decreasing f (redshift, $z > 0$) for receding sources of light.
- [More info.](#)

End of first week's prereading...

5 Lorentz Transformations

- Lorentz transformations generalise Galilean transformations (3.1), keeping $y' = y, z' = z$, to build in length contraction and time dilation

$$t' = \gamma \left(t - \frac{vx}{c^2} \right), \quad ct' = \gamma \left(ct - \frac{v}{c}x \right) \quad (5.1)$$

$$x' = \gamma(x - vt), \quad x' = \gamma \left(x - \frac{v}{c}ct \right). \quad (5.2)$$

- Write in matrix form as

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma \frac{v}{c} & 0 & 0 \\ -\gamma \frac{v}{c} & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}. \quad (5.3)$$

- Inverse Lorentz transformations are obtained by interchanging the primes and changing the sign of v . Check for (ct, x) using matrix inversion.
- In general, define four-vector (tensor³) $x_\mu \equiv (ct, x, y, z)$ with transpose x^μ , $\mu = 0, 1, 2, 3$, and write (5.3) as

$$x^{\mu'} = L^{\mu'}_{\mu} x^\mu \equiv \sum_{\mu=0}^3 L^{\mu'}_{\mu} x^\mu, \quad (5.4)$$

where $L^{\mu'}_{\mu}$ are the matrix elements in Eq. (5.3).

³A tensor is an object with specified coordinate transformation properties.

5.1 Minkowski diagrams

- Minkowski Diagrams incorporate the constancy of the speed of light and the Lorentz transformations

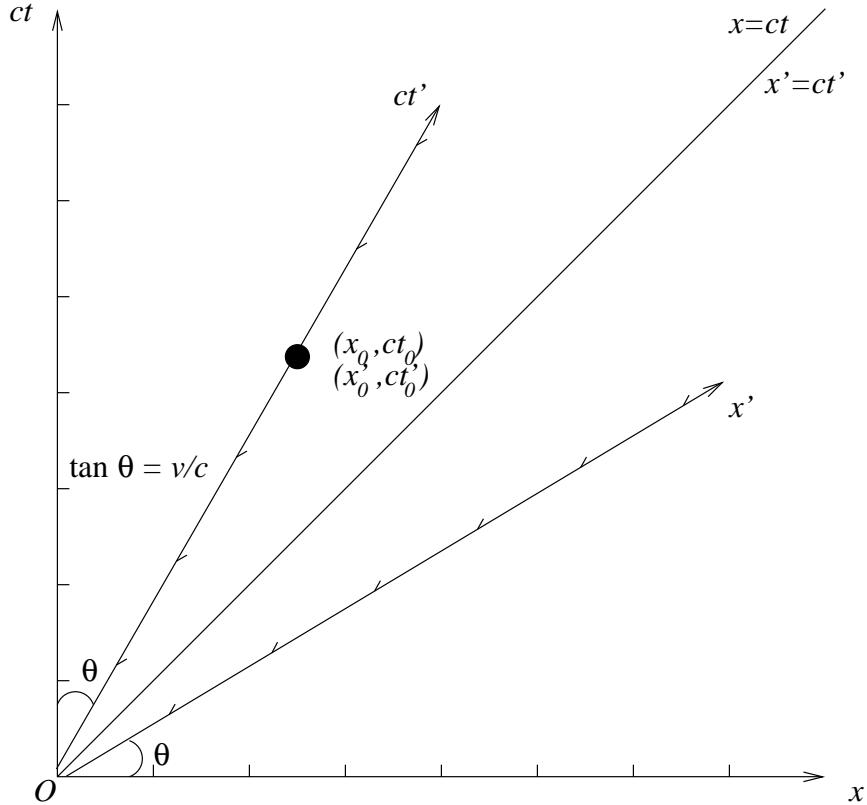


Figure 1: Minkowski diagram with $v/c = 1/\sqrt{3}$, and hence $\theta = 30^\circ$ and $\gamma = \sqrt{3/2}$. Axes have units of length, e.g. light-years.

- Inverse of (5.1): axis $ct' = ct/\gamma$ since $x' = 0$.
- Inverse of (5.2): axis $x' = x/\gamma$ since $t' = 0$.
- The ct' axis has $x' = 0 = \gamma(x_0 - vt_0)$. Hence, $\tan \theta = x_0/(ct_0) = vt_0/(ct_0) = v/c$.

- Time dilation:

- Consider two events at $x_1 = x_2$ at times t_1 and t_2 . Using Eq. (5.1) $t'_1 = \gamma(t_1 - \frac{vx_1}{c^2})$ and $t'_2 = \gamma(t_2 - \frac{vx_1}{c^2})$. Hence,

$$\Delta t' = t'_2 - t'_1 = \gamma(t_2 - t_1) = \gamma\Delta t_p. \quad (5.5)$$

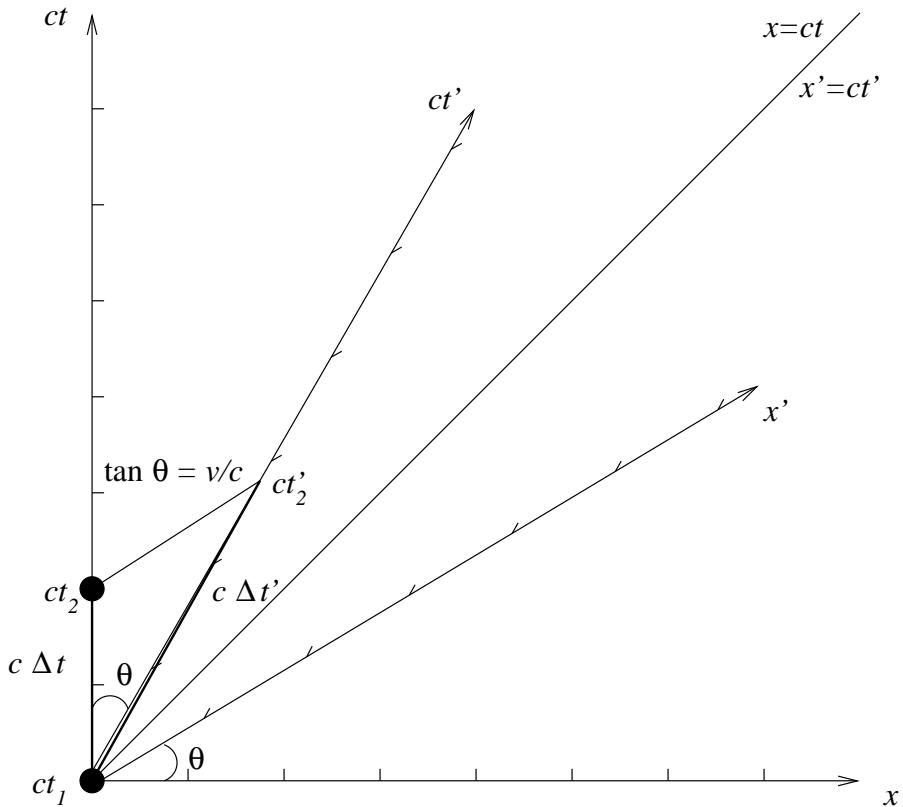


Figure 2: For the two events $x_1 = x_2 = 0$ and $t'_1 = t_1 = 0$. Note: $c\Delta t_p = c\Delta t = 2 < c\Delta t' \approx 2.7$.

- Consider two events at $x'_1 = x'_2$ at times t'_1 and t'_2 . Using the inverse of Eq. (5.1)

$$\Delta t = t_2 - t_1 = \gamma(t'_2 - t'_1) = \gamma\Delta t_p. \quad (5.6)$$

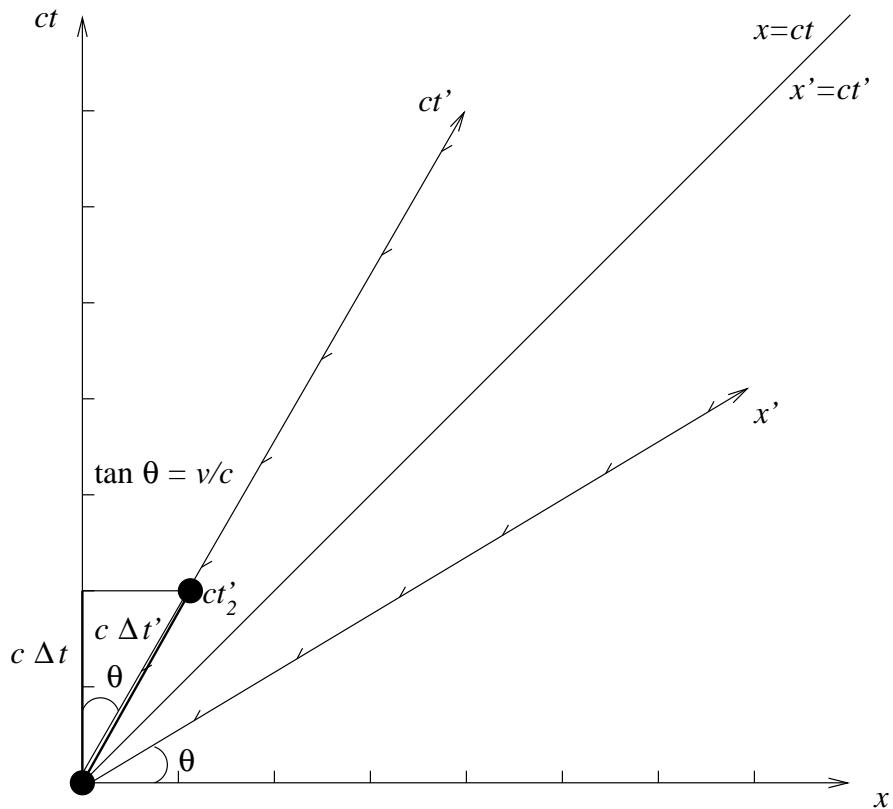


Figure 3: For the two events $x'_1 = x'_2 = 0$ and $t'_1 = t_1 = 0$.
 Note: $c\Delta t_p = c\Delta t' \approx 1.7 < c\Delta t = 2$.

- Length contraction:

- Consider $L_p = x_2 - x_1$ at same time $t_1 = t_2$, with L' determined by the two events at the same time $t'_1 = t'_2$ at positions x'_1 and x'_2 . Then $x_1 = \gamma(x'_1 + vt'_1)$ and $x_2 = \gamma(x'_2 + vt'_2)$. Hence,

$$L_p = x_2 - x_1 = \gamma(x'_2 - x'_1) = \gamma L'. \quad (5.7)$$

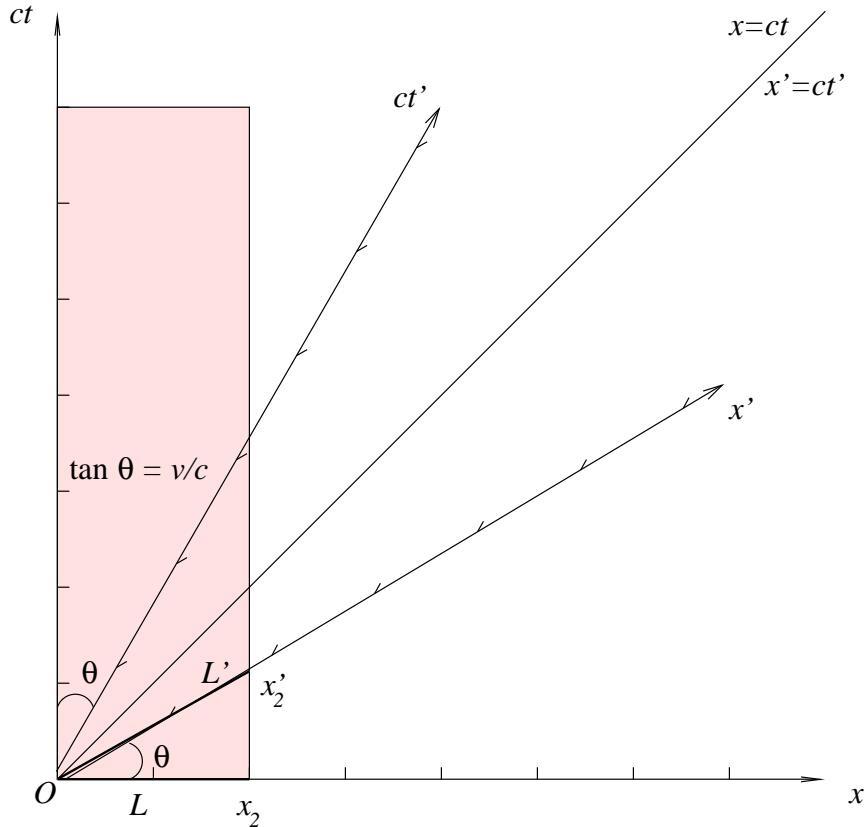


Figure 4: $L_p = L = 2 > L' \approx 1.7$

- Consider $L_p = x'_2 - x'_1$ at same time $t'_1 = t'_2$, with L determined by the two events at the same time $t_1 = t_2$ at positions x_1 and x_2 . Using Eq. (5.2)

$$L_p = x'_2 - x'_1 = \gamma(x_2 - x_1) = \gamma L. \quad (5.8)$$

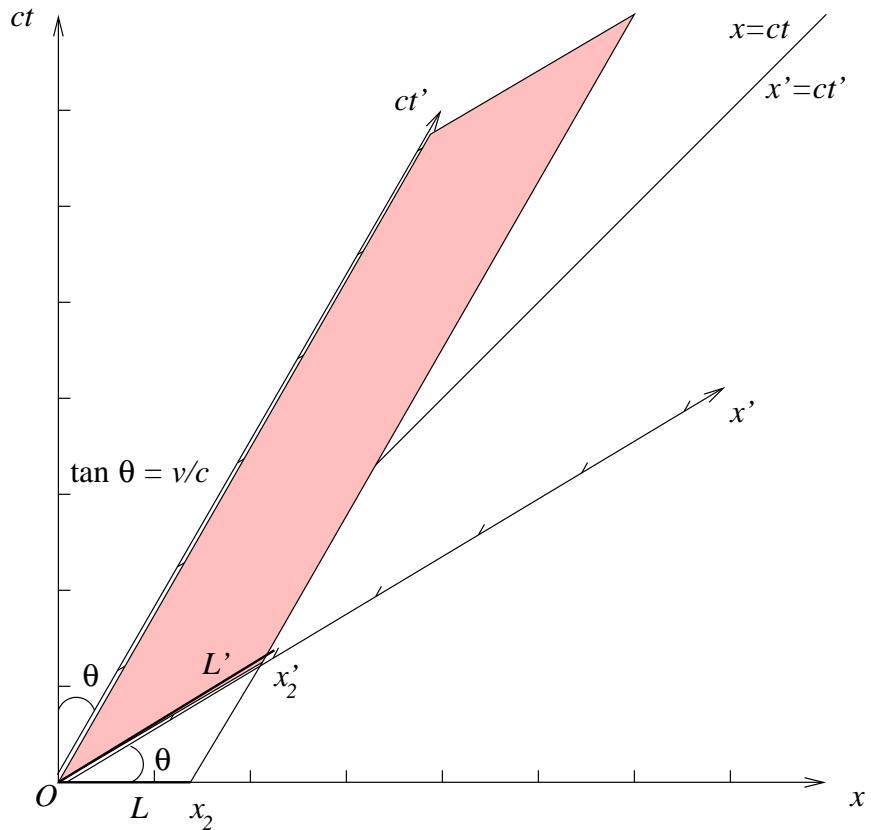
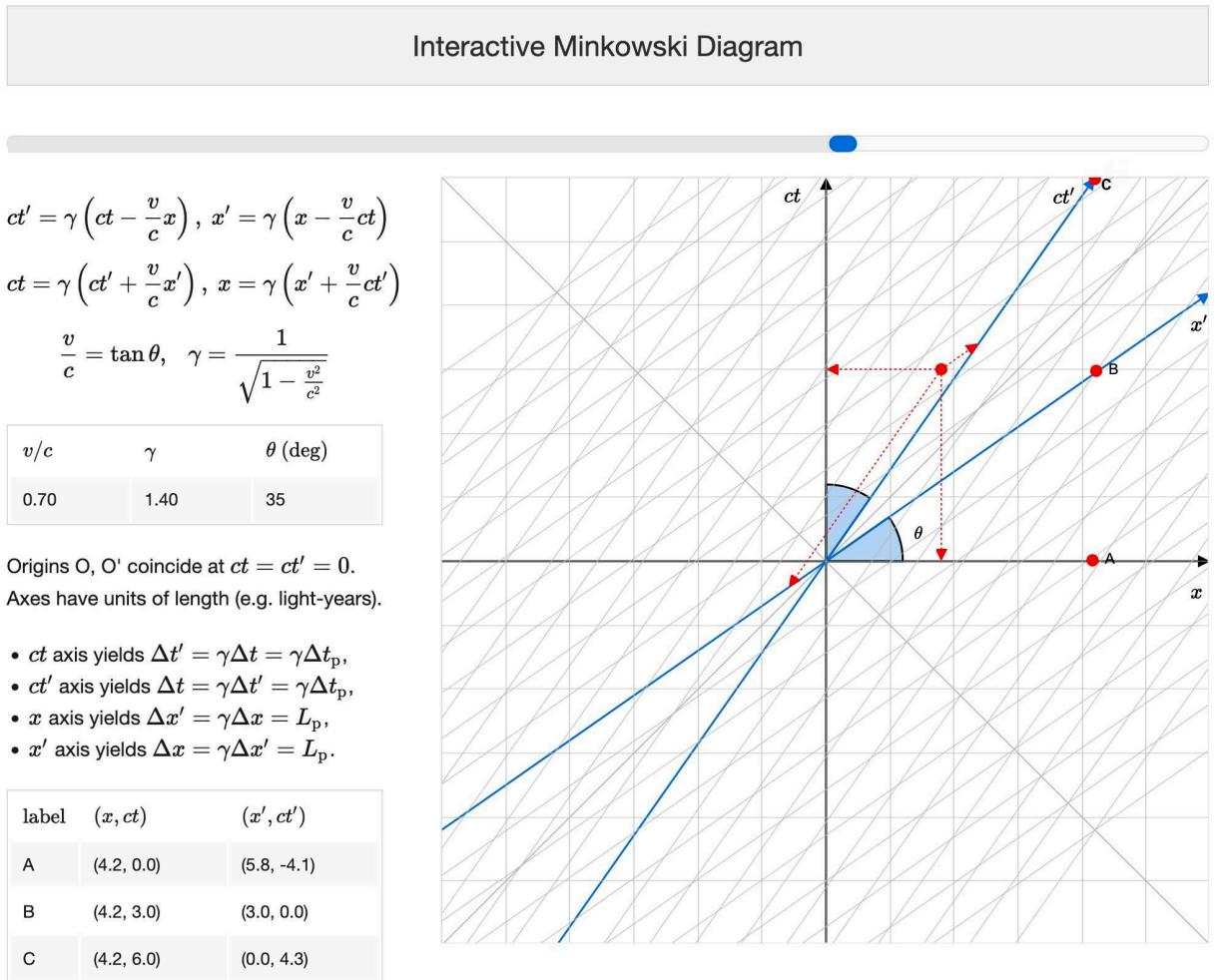


Figure 5: $L_p = L' \approx 1.9 > L \approx 1.3$

- Same time dilation and length contraction relations are obtained irrespective of frame of reference.

- Rocket with $v = 0.7c$ ($\gamma = 1.4$) travels towards Proxima Centauri, $\Delta x = 4.2$ (OA) light-years away from Earth. [Interactive Minkowski Diagram](#):
 - Earth: Proxima Centauri (C) is reached in $c\Delta t = c\Delta x/v = 6$ light-years, or $t = 6$ years.
 - Rocket: C reached in $\Delta t' = 4.3$ years, traveling $\Delta x' = 3$ (OB) light-years. Note, $v' = \Delta x'/\Delta t' = -3c/4.3 = -0.7c = -v$.



5.2 Spacetime and causality

- Define the spacetime interval $(\Delta s)^2$ (for one spatial dimension) via

$$\begin{aligned}
 (\Delta s)^2 &\equiv (c\Delta t)^2 - (\Delta x)^2 \\
 &= (c\Delta t')^2 - (\Delta x')^2 \\
 &\equiv (\Delta s')^2,
 \end{aligned} \tag{5.9}$$

i.e. remains invariant under Lorentz transformations. Verify (5.9) with $\Delta x' \equiv x'_2 - x'_1$ and $\Delta t' \equiv t'_2 - t'_1$ satisfying (5.10) and (5.11), respectively.

- $(\Delta s)^2 = 0$: null interval ($\Delta x = c\Delta t$), the two events can be connected by a ray of light.
- $(\Delta s)^2 < 0$: space-like interval, the events cannot be causally connected.
- $(\Delta s)^2 > 0$: time-like interval, implies the two events may be causally connected, i.e. those events that are separated by a velocity $v < c$. *Worldlines* represent evolution in time of objects, all have $(\Delta s)^2 > 0$.
- **Tachyons**, mythical faster than light ($\gamma \in \mathbb{C}$) particles, have $(\Delta s)^2 < 0$ and so would lead to causality violation. Nevertheless, they have been “discovered” several times!

Without loss of generality, suppose the tachyons have infinite speed: can be anywhere in space at the one time. Can set up an experiment where tachyons go back in time!

- Suppose two Observers, O and O' are both armed with a tachyon gun and receiver.
- They agree that, as they move apart at high speed, O will fire a **tachyon** at O' . Upon receipt, O' will fire a **tachyon** back at O .
- The outcome is that O receives a **tachyon** before firing one!

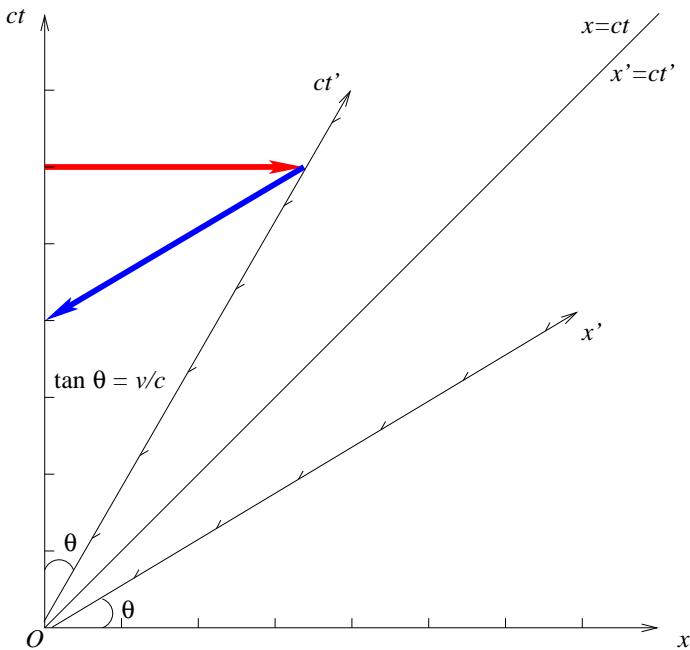


Figure 6: Arrows depict tachyons with infinite speed.

5.3 Lorentz velocity addition

- Using (5.2) and (5.1) with $u_{x'} \equiv dx'/dt'$ and $u_x \equiv dx/dt$, obtain Lorentz velocity addition formulas:

$$dx' = \gamma(dx - vdt) \quad (5.10)$$

$$dt' = \gamma \left(dt - \frac{vdx}{c^2} \right), \quad (5.11)$$

$$\frac{dx'}{dt'} = \frac{dx - vdt}{dt - \frac{vdx}{c^2}}$$

$$u_{x'} = \frac{u_x - v}{1 - \frac{vu_x}{c^2}}, \text{ or } u_x = \frac{u_{x'} + v}{1 + \frac{vu_{x'}}{c^2}}. \quad (5.12)$$

- For $|vu_x|/c^2 \ll 1$, $u_{x'} \approx u_x - v$, see (3.2).
- For $u_x = c$ get $u_{x'} = c$, even for $v = -c$!
- Similarly, from $dy' = dy$ and $dz' = dz$, have

$$u_{y'} = \frac{dy}{\gamma \left(dt - \frac{vdx}{c^2} \right)}$$

$$= \frac{u_y}{\gamma \left(1 - \frac{vu_x}{c^2} \right)}, \quad (5.13)$$

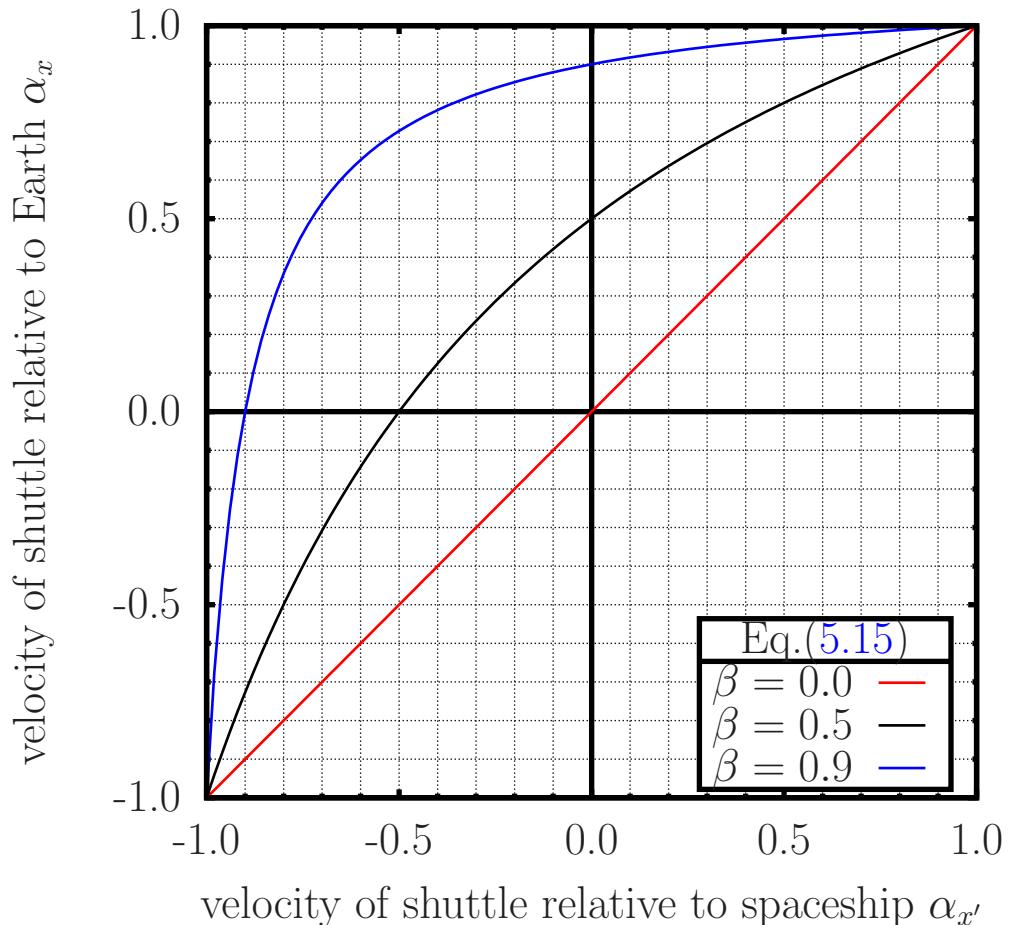
$$u_{z'} = \frac{u_z}{\gamma \left(1 - \frac{vu_x}{c^2} \right)}. \quad (5.14)$$

- Upon $S \leftrightarrow S'$ with $v \rightarrow -v$ obtain formulas for \mathbf{u} directly, or via algebra, see (5.12) for u_x .

- For $\alpha_x = u_x/c$, $\alpha_{x'} = u_{x'}/c$ and $\beta = v/c$, Eqs. (5.12) yield Lorentz dimensionless colinear velocity addition formulas

$$\alpha_{x'} = \frac{\alpha_x - \beta}{1 - \alpha_x \beta} \text{ or } \alpha_x = \frac{\alpha_{x'} + \beta}{1 + \alpha_{x'} \beta}. \quad (5.15)$$

- For spaceship moving with velocity v relative to the Earth, and shuttle moving colinearly with velocity $u_{x'}$ relative to the spaceship, the velocity of the shuttle relative to the Earth u_x never exceeds c ($|\alpha_x| \leq 1$):



6 Relativistic Laws of Physics

We saw how the Galilean velocity transformations $u_{x'} = u_x - v$ ensured that the Newtonian momentum conservation law was covariant under the Galilean transformations, see Eq.(3.3). The Lorentz velocity transformation (5.12) destroys this.

6.1 Momentum, force and energy

- For proper time $\tau = t/\gamma$ define relativistic momentum vector \mathbf{p} for velocity $d\mathbf{x}/dt \equiv \mathbf{u} = u\hat{\mathbf{u}}$, where $\hat{\mathbf{u}}$ is a unit vector, by

$$\mathbf{p} \equiv m \frac{d\mathbf{x}}{d\tau} = m \frac{d\mathbf{x}}{dt} \frac{dt}{d\tau} = \frac{m\mathbf{u}}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma(u)m\mathbf{u}. \quad (6.1)$$

- Relativistic force vector \mathbf{F} is defined by

$$\begin{aligned} \mathbf{F} \equiv \frac{d\mathbf{p}}{dt} &= m\hat{\mathbf{u}} \frac{du}{dt} \frac{d}{du}(\gamma(u)u) \\ &= m\mathbf{a} \frac{d}{du}(\gamma(u)u) \\ &= m\mathbf{a}\gamma^3(u). \end{aligned} \quad (6.2)$$

For a constant F , as u increases towards c the acceleration decreases!

- Using (6.2) with \mathbf{F} in direction \mathbf{x} , the relativistic energy is defined from the work-energy relation

$$\begin{aligned}
W &\equiv \int_{x_1}^{x_2} F dx = m \int_{x_1}^{x_2} \frac{\frac{du}{dt} dx}{\left(1 - \frac{u^2}{c^2}\right)^{\frac{3}{2}}}, \text{ as } \frac{du}{dt} = \frac{du}{dx} \frac{dx}{dt}, \\
&= m \int_{u_1}^{u_2} \frac{udu}{\left(1 - \frac{u^2}{c^2}\right)^{\frac{3}{2}}}, \text{ where } udu = \frac{dx}{dt} \frac{du}{dx} dx, \\
&= \left. \frac{mc^2}{\sqrt{1 - \frac{u^2}{c^2}}} \right|_{u_1}^{u_2} = \frac{mc^2}{\sqrt{1 - \frac{u_2^2}{c^2}}} - \frac{mc^2}{\sqrt{1 - \frac{u_1^2}{c^2}}}. \quad (6.3)
\end{aligned}$$

- Without loss of generality we take $u_1 = 0$ then $K = W$ is the relativistic kinetic energy

$$K = \gamma mc^2 - mc^2. \quad (6.4)$$

- Using Eq.(4.2) for $u \ll c$ have $K \approx \frac{1}{2}mu^2$.
- Define the total energy $E = K + mc^2$, and so

$$E = \gamma mc^2. \quad (6.5)$$

- mc^2 is the rest energy.

- Historically, m was defined as the rest mass m_0 , and $m = \gamma m_0$ as the relativistic mass leading to

$E = mc^2$ as the general case, and not just the rest case. This is no longer in fashion. Eq. (6.5) is the general case, where m is called the [invariant mass](#).

6.2 Momentum-energy conservation

- Goal: to formulate relativistic energy and momentum conservation laws within an inertial frame of reference.
- From relations $E = \gamma mc^2$ and $p = \gamma mu$ can easily show that (please do)

$$E^2 = p^2 c^2 + m^2 c^4. \quad (6.6)$$

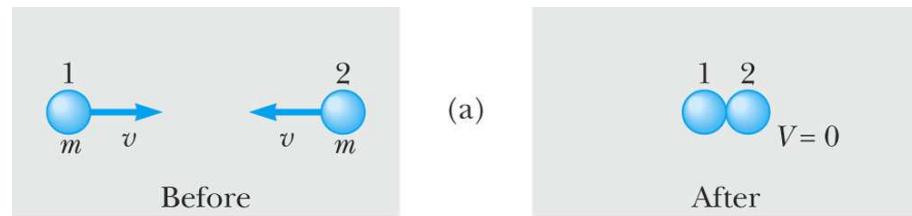
- For $p = 0$ obtain the rest energy $E = mc^2$.
- As $u \rightarrow c$ have $E \rightarrow pc$.
- For photons $u = c$, $m = 0$, so $E = pc$. Define photon momentum p , in direction of propagation, from Planck's photon energy $E = hf$

$$p = hf/c. \quad (6.7)$$

- Note, since $E^2 - p^2 c^2 = m^2 c^4$, this must be invariant under Lorentz transformations, but not E and p separately since they depend on u .

- The law of Mass-Energy conservation states that E before and after an interaction must be the same (within an inertial frame of reference).

- Fusion: Suppose two particles of mass m are moving toward each other with velocities v and $-v$, relative to the centre of mass frame, fuse together after the collision:



- Classically, the initial total kinetic energy is $K = 2mv^2/2$, and the final $K = 0$.
- Relativistically, have $E = 2\gamma mc^2 = Mc^2$, i.e.

$$M = 2\gamma m \geq 2m. \quad (6.8)$$

- Define $\Delta M \equiv M - 2m = M(\gamma - 1)/\gamma = 2m(\gamma - 1) = 2K/c^2$, using Eq. 6.4.
- Fission: A mass M breaks into two equal parts of $m = 0.4M$ with velocities v and $-v$ then

$$Mc^2 = 2\gamma 0.4Mc^2, \gamma = \frac{1}{0.8}, v = 0.6c.$$

- Since E is conserved within a frame, and $p^2c^2 = E^2 - m^2c^4$, have p automatically conserved as well!