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1 Preliminaries

• Einstein: “Education is what is left after everything
learned has been forgotten”

◦ Leads to transferable skills for success in life

◦ Fights 2nd Law of Thermodynamics:
Entropy (S) increases; Information (I = 1/S)
diminishes (for isolated systems).

◦ Study Physics because it

• is hard; requires courage, builds confidence

• is evidence-based:“You are not entitled to
any opinion, only what you can argue for!”

• builds knowledge depth; know if don’t know!

• leads to effective action

• welcomes failure, builds resilience

• requires balance of clarity and brevity

• is motivated by autonomy, mastery, purpose

• “Lecturing is the process by which the notes of the
lecturer get transferred to the notes of the student
bypassing the brains of either!”

◦ Harvard’s Eric Mazur’s interactive teaching.

◦ Please familiarise yourself with the lecture notes
before class!
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• Importance of clear and succinct notation:

An object moves with velocity v(t) from x(ti) to
x(tf) with constant acceleration a. By definition,
a = [v(tf)− v(ti)]/[tf − ti]. Alternatively, a ≡ dv

dt

∫ tf

ti

dv

dt
dt = a

∫ tf

ti

dt

v(t)
]tf

ti
= a t

]tf

ti
v(tf)− v(ti) = a[tf − ti]. (1.1)

Either way, we have

v(tf) = v(ti) + a[tf − ti]. (1.2)

However, High Schools (used to!) write v = u+at;
four symbols with three mistakes!

1. Show functional dependence, e.g. v(t) to dis-
tinguish from constants such as a,

2. Do not invent new symbols for same concepts,
e.g. use v(ti) ≡ vi rather than u,

3. Time difference tf − ti ≡ ∆t is not time t.

Exercise: for v(t) ≡ dx
dt (t), integrate (1.2) to yield

∆x ≡ x(tf)− x(ti) = v(ti)∆t +
1

2
a∆t2. (1.3)
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2 Introduction

• Theory of Relativity was published by Einstein in
1905 and deals with motion in the absence of grav-
ity. It became known as Special Relativity after
General Relativity, which includes gravity, was in-
troduced in 1915.

• Special Relativity deals with space and time:

◦ What is space? Three dimensions x, y, z. Gen-
erally, no preferred direction. Increasingly ex-
panding since the Big Bang. Is space real?

◦ What is time? Einstein: “That which is mea-
sured by clocks!”. Can write an object’s posi-
tion (x, y, z) in parametric form x(t), y(t), z(t).

• Is time real?

• Does time exist if nothing changes?

• What was there before The Big Bang?

• Is there something special about the present
moment?

• What is the difference between the past
and the future?

• Time is inextricably connected to the speed
of light; ∆t = ∆x/c.
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3 Galilean Relativity

• Galileo: The laws of mechanics must be the same
in all inertial (non-accelerating) frames of reference.

◦ Inertial frames S(t, x, y, z) and S ′(t′, x′, y′, z′)
have relative constant velocity v ≡ dx

dt with x-
axes aligned and O′ = O at t = 0. Then

t′ = t

x′(t′) = x(t)− vt

y′(t′) = y(t)

z′(t′) = z(t) (3.1)

◦ Note: v is a vector (v), use ± for direction.

◦ What is the velocity of O relative to O′?

◦ If O′ is approaching O, is v positive, negative,
or can’t tell?
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• Interchange frames: S ↔ S ′ with v ↔ −v.

• An object (ball) in S ′ has ux′ ≡ dx′
dt′ =

dx
dt − v, i.e.

ux′ = ux − v, or ux = ux′ + v (3.2)

are the Galilean velocity addition formulas.

• For general u(t), uy′(t
′) = uy(t) and uz′(t

′) = uz(t).

• Under Galilean transformations:

◦ Lengths are invariant. Let x1 = x0, x2 = x0+l
then

l′ = x′2 − x′1
= (x2 − vt)− (x1 − vt)
= (x0 + l − vt)− (x0 − vt)
= l.

◦ Forces are invariant since typically depend on
the distance between objects (x2 − x1).

◦ Laws of physics are covariant. Conservation of
momentum in S also holds in S ′. Two masses
moving along x stick together after collision:

m1u1 +m2u2 = (m1 +m2)u3,

m1(u
′
1 + v) +m2(u

′
2 + v) = (m1 +m2)(u

′
3 + v),

m1u
′
1 +m2u

′
2 = (m1 +m2)u

′
3. (3.3)
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4 Special Relativity

4.1 Postulates

1. All laws of physics have the same form in all inertial
(relative velocity v is constant) frames.1

2. The speed of light, c ≈ 3 × 108 m/s in a vacuum,
is constant.2

• General Relativity adds just one more postulate:
In a local neighbourhood gravitational and inertial
forces are equivalent.

• The ultimate goal is to reformulate the Laws of
Physics in a covariant form: i.e. be invariant under
transformation between inertial frames of arbitrary
relative velocity v < c.

1Laws of Physics arise from symmetry principles (see 1915
Emmy Noether’s theorem), and so do the Laws of societies!

2c ≈ 3 Å/as, where angstrom Å ≡ 10−10 m, and attosecond as ≡ 10−18 s.
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4.2 Simultaneity

Let us consider the consequences of the 2nd postulate.

• Simultaneous events in one frame are not simulta-
neous in a frame moving relative to the first, see
figure below.

◦ O sees events A and B as simultaneous, see
(b) above, but O′ sees event B′ before A′.

◦ Hence, time intervals are different in frames
moving relative to each other.

◦ This is due to the finite speed of light.

◦ Our intuition is based on essentially an infinite
speed of light.
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4.3 Time dilation

Consider the figures (a), (b) and (c) below.

(a) Within the train frame S ′, light travels a distance
(up plus down) c∆t′ = 2d, or d = c∆t′/2.

(b) In the outside frame S, light travels (up plus down)
distance c∆t and the horizontal distance v∆t.

(c) Hence (c∆t/2)2 = d2 + (v∆t/2)2.

• Substituting (c∆t′/2)2 for d2, and solving for ∆t,

leads to ∆t = ∆t′/
√

1− v2

c2
.

• The time in a frame at rest with the clock is known
as the proper time ∆tp = ∆t′ ≤ ∆t (dilates for
moving frames), and so

∆t = γ∆tp, where γ(v) =
1

√

1− v2

c2

≥ 1. (4.1)

10



• γ and its (two-term) Taylor Series expansion using

(1 + x)n ≈ 1 + nx for |x| ≪ 1, n ∈ R (4.2)

1 + (v2/c2)/2

γ(v) = (1− v2/c2)−
1

2

v/c

10.90.80.70.60.50.40.30.20.10

10
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0

◦ for β = v/c = 3/5 ⇐⇒ γ(v) = 5/4

◦ for β = v/c = 4/5 ⇐⇒ γ(v) = 5/3

◦ for β = v/c = 0.995 ⇐⇒ γ(v) ≈ 10.0

• Time dilation of moving particles is consistent with
experimental observation. Not proof of correctness.

◦ Sometimes, theory can falsify experiment!
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4.4 Length contraction

• Define the proper length Lp as the length measured
in the rest frame.

• If O′ travels Lp = v∆t relative to O, see fig. pg. 6,
then O travels −L′ = −v∆tp relative to O′.

• Have v = L′/∆tp = Lp/∆t, and using Eq. (4.1)

L′ = Lp/γ. (4.3)

• Note L′ ≤ Lp, i.e. lengths contract along the direc-
tion of motion.

• Muons of (proper) half-life ∆tp ∼ 10−6 s (c∆tp =
300 m) created at 5 km above the Earth, travel-
ing at 0.995 c (γ ≈ 10), reach the surface in large
numbers:

◦ Muon frame: small half-life, but travels short
distance (5,000 m/10=500 m).

◦ Earth frame: Ten times longer half-life, so can
travel longer (3,000 m) distance.

◦ More details and YouTube video.

12

https://en.wikipedia.org/wiki/Muon
https://en.wikipedia.org/wiki/Half-life
https://hyperphysics.phy-astr.gsu.edu/hbase/relativ/muon.html
https://www.youtube.com/watch?v=3pelWUdXW98


4.5 Relativistic Doppler effect

• Stationary observer O (with telescope) receiving
light of emitted wavelength λ′ from recedingO′ with
velocity v

• The wavelength of light λ is the distance between
successive wavefronts and is related to the frequency
f ≡ 1/T via c = fλ, i.e. λ = cT .

• From perspective of O′, moving away from O at
speed v then T ′ = λ′/(c− v), and

λ′ = (c− v)T ′

= (c− v)γT

=
(c− v)
√

1− v2

c2

λ

c
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=

√

1− v
c

1 + v
c

λ, (4.4)

or for frequencies f ′ = fs (source) have

fs
f

=

√

1 + v
c

1− v
c

. (4.5)

• Redshift z = (fs − f )/f

z =

√

1 + v
c

1− v
c

− 1 ≈ v

c
for v ≪ c, (4.6)

where we used the Taylor Series expansion (4.2).

• Hence have increased f (blue-shift, z < 0) for ap-
proaching (v < 0) light sources, and decreasing f
(redshift, z > 0) for receding sources of light.

• More info.

End of first week’s prereading...
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5 Lorentz Transformations

• Lorentz transformations generalise Galilean trans-
formations (3.1), keeping y′ = y, z′ = z, to build in
length contraction and time dilation

t′ = γ
(

t− vx

c2

)

, ct′ = γ
(

ct− v

c
x
)

(5.1)

x′ = γ(x− vt), x′ = γ
(

x− v

c
ct
)

. (5.2)

• Write in matrix form as








ct′

x′

y′

z′









=









γ −γ v
c 0 0

−γ v
c γ 0 0
0 0 1 0
0 0 0 1

















ct
x
y
z









. (5.3)

• Inverse Lorentz transformations are obtained by in-
terchanging the primes and changing the sign of v.
Check for (ct, x) using matrix inversion.

• In general, define four-vector (tensor3) xµ ≡ (ct, x, y, z)
with transpose xµ, µ = 0, 1, 2, 3, and write (5.3) as

xµ
′
= Lµ′

µx
µ ≡

3
∑

µ=0

Lµ′
µx

µ, (5.4)

where Lµ′
µ are the matrix elements in Eq. (5.3).

3A tensor is an object with specified coordinate transformation properties.
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5.1 Minkowski diagrams

• Minkowski Diagrams incorporate the constancy of
the speed of light and the Lorentz transformations

tan θ = v/c

x

ct

O

ct’

x’

x=ct

x’=ct’

θ

θ

00

00

(x  ,ct )
(x’ ,ct’)

Figure 1: Minkowski diagram with v/c = 1/
√
3, and

hence θ = 30◦ and γ =
√

3/2. Axes have units of length,
e.g. light-years.

◦ Inverse of (5.1): axis ct′ = ct/γ since x′ = 0.

◦ Inverse of (5.2): axis x′ = x/γ since t′ = 0.

◦ The ct′ axis has x′ = 0 = γ(x0 − vt0). Hence,
tan θ = x0/(ct0) = vt0/(ct0) = v/c.
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• Time dilation:

◦ Consider two events at x1 = x2 at times t1
and t2. Using Eq. (5.1) t′1 = γ(t1 − vx1

c2
) and

t′2 = γ(t2 − vx1
c2
). Hence,

∆t′ = t′2 − t′1 = γ(t2 − t1) = γ∆tp. (5.5)

tan θ = v/c

x

ct

ct’

x’

x=ct

x’=ct’

θ

θ

c ∆ t

ct
2

ct
1

ct’
2

c ∆ t’

Figure 2: For the two events x1 = x2 = 0 and t′1 = t1 = 0.
Note: c∆tp = c∆t = 2 < c∆t′ ≈ 2.7.
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◦ Consider two events at x′1 = x′2 at times t′1
and t′2. Using the inverse of Eq. (5.1)

∆t = t2 − t1 = γ(t′2 − t′1) = γ∆tp. (5.6)

tan θ = v/c

x

ct

ct’

x’

x=ct

x’=ct’

θ

θ

∆ t
∆ t’

c
c

2
ct’

Figure 3: For the two events x′1 = x′2 = 0 and t′1 = t1 = 0.
Note: c∆tp = c∆t′ ≈ 1.7 < c∆t = 2.
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• Length contraction:

◦ Consider Lp = x2 − x1 at same time t1 = t2,
with L′ determined by the two events at the
same time t′1 = t′2 at positions x

′
1 and x

′
2. Then

x1 = γ(x′1+vt′1) and x2 = γ(x′2+vt′2). Hence,

Lp = x2 − x1 = γ(x′2 − x′1) = γL′. (5.7)

tan θ = v/c

x

ct

O

ct’

x’

x=ct

x’=ct’

θ

θ
x

2

x’
2

L

L’

Figure 4: Lp = L = 2 > L′ ≈ 1.7
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◦ Consider Lp = x′2 − x′1 at same time t′1 =
t′2, with L determined by the two events at
the same time t1 = t2 at positions x1 and x2.
Using Eq. (5.2)

Lp = x′2 − x′1 = γ(x2 − x1) = γL. (5.8)

tan θ = v/c

x

ct

O

ct’

x’

x=ct

x’=ct’

θ

θ
x

x’
2

2

L’

L

Figure 5: Lp = L′ ≈ 1.9 > L ≈ 1.3

• Same time dilation and length contraction relations
are obtained irrespective of frame of reference.
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• Rocket with v = 0.7c (γ = 1.4) travels towards
Proxima Centauri, ∆x = 4.2 (OA) light-years away
from Earth. Interactive Minkowski Diagram:

◦ Earth: Proxima Centauri (C) is reached in
c∆t = c∆x/v = 6 light-years, or t = 6 years.

◦ Rocket: C reached in ∆t′ = 4.3 years, trav-
eling ∆x′ = 3 (OB) light-years. Note, v′ =
∆x′/∆t′ = −3c/4.3 = −0.7c = −v.
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5.2 Spacetime and causality

• Define the spacetime interval (∆s)2 (for one spatial
dimension) via

(∆s)2 ≡ (c∆t)2 − (∆x)2

= (c∆t′)2 − (∆x′)2 (5.9)

≡ (∆s′)2,

i.e. remains invariant under Lorentz transforma-
tions. Verify (5.9) with ∆x′ ≡ x′2 − x′1 and ∆t′ ≡
t′2 − t′1 satisfying (5.10) and (5.11), respectively.

◦ (∆s)2 = 0: null interval (∆x = c∆t), the two
events can be connected by a ray of light.

◦ (∆s)2 < 0: space-like interval, the events can-
not be causally connected.

◦ (∆s)2 > 0: time-like interval, implies the two
events may be causally connected, i.e. those
events that are separated by a velocity v < c.
Worldlines represent evolution in time of ob-
jects, all have (∆s)2 > 0.

• Tachyons, mythical faster than light (γ ∈ C) par-
ticles, have (∆s)2 < 0 and so would lead to causal-
ity violation. Nevertheless, they have been “discov-
ered” several times!
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Without loss of generality, suppose the tachyons
have infinite speed: can be anywhere in space at the
one time. Can set up an experiment where tachyons
go back in time!

◦ Suppose two Observers, O and O′ are both
armed with a tachyon gun and receiver.

◦ They agree that, as they move apart at high
speed, O will fire a tachyon at O′. Upon re-
ceipt, O′ will fire a tachyon back at O.

◦ The outcome is that O receives a tachyon be-
fore firing one!

tan θ = v/c

x

ct

O

ct’

x’

x=ct

x’=ct’

θ

θ

Figure 6: Arrows depict tachyons with infinite speed.
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5.3 Lorentz velocity addition

• Using (5.2) and (5.1) with ux′ ≡ dx′/dt′ and ux ≡
dx/dt, obtain Lorentz velocity addition formulas:

dx′ = γ(dx− vdt) (5.10)

dt′ = γ

(

dt− vdx

c2

)

, (5.11)

dx′

dt′
=

dx− vdt

dt− vdx
c2

ux′ =
ux − v

1− vux
c2

, or ux =
ux′ + v

1 +
vux′
c2

. (5.12)

◦ For |vux|/c2 ≪ 1, ux′ ≈ ux − v, see (3.2).

◦ For ux = c get ux′ = c, even for v = −c!

◦ Similarly, from dy′ = dy and dz′ = dz, have

uy′ =
dy

γ
(

dt− vdx
c2

)

=
uy

γ
(

1− vux
c2

), (5.13)

uz′ =
uz

γ
(

1− vux
c2

). (5.14)

◦ Upon S ↔ S ′ with v → −v obtain formulas
for u directly, or via algebra, see (5.12) for ux.
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◦ For αx = ux/c, αx′ = ux′/c and β = v/c,
Eqs. (5.12) yield Lorentz dimensionless colin-
ear velocity addition formulas

αx′ =
αx − β

1− αxβ
or αx =

αx′ + β

1 + αx′β
. (5.15)

◦ For spaceship moving with velocity v relative
to the Earth, and shuttle moving colinearly
with velocity ux′ relative to the spaceship, the
velocity of the shuttle relative to the Earth ux
never exceeds c (|αx| ≤ 1):

β = 0.9
β = 0.5
β = 0.0
Eq.(5.15)

velocity of shuttle relative to spaceship αx′

ve
lo
ci
ty

of
sh
u
tt
le
re
la
ti
ve

to
E
ar
th

α
x

1.00.50.0-0.5-1.0

1.0

0.5

0.0

-0.5

-1.0
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6 Relativistic Laws of Physics

We saw how the Galilean velocity transformations ux′ =
ux − v ensured that the Newtonian momentum conser-
vation law was covariant under the Galilean transforma-
tions, see Eq.(3.3). The Lorentz velocity transformation
(5.12) destroys this.

6.1 Momentum, force and energy

• For proper time τ = t/γ define relativistic momen-
tum vector p for velocity dx/dt ≡ u = uû, where
û is a unit vector, by

p ≡ m
dx

dτ
= m

dx

dt

dt

dτ
=

mu
√

1− u2

c2

= γ(u)mu.

(6.1)

• Relativistic force vector F is defined by

F ≡ dp

dt
= mû

du

dt

d

du
(γ(u)u)

= ma
d

du
(γ(u)u)

= maγ3(u). (6.2)

For a constant F , as u increases towards c the ac-
celeration decreases!
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• Using (6.2) with F in direction x, the relativistic
energy is defined from the work-energy relation

W ≡
x2
∫

x1

Fdx = m

x2
∫

x1

du
dtdx

(

1− u2

c2

)3
2

, as
du

dt
=

du

dx

dx

dt
,

= m

u2
∫

u1

udu
(

1− u2

c2

)3
2

, where udu =
dx

dt

du

dx
dx,

=
mc2

√

1− u2

c2







u2

u1

=
mc2

√

1− u22
c2

− mc2
√

1− u21
c2

. (6.3)

◦ Without loss of generality we take u1 = 0 then
K = W is the relativistic kinetic energy

K = γmc2 −mc2. (6.4)

◦ Using Eq.(4.2) for u ≪ c have K ≈ 1
2mu2.

◦ Define the total energy E = K +mc2, and so

E = γmc2. (6.5)

◦ mc2 is the rest energy.

• Historically, m was defined as the rest mass m0,
and m = γm0 as the relativistic mass leading to
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E = mc2 as the general case, and not just the rest
case. This is no longer in fashion. Eq. (6.5) is the
general case, where m is called the invariant mass.

6.2 Momentum-energy conservation

• Goal: to formulate relativistic energy and momen-
tum conservation laws within an inertial frame of
reference.

• From relations E = γmc2 and p = γmu can easily
show that (please do)

E2 = p2c2 +m2c4. (6.6)

◦ For p = 0 obtain the rest energy E = mc2.

◦ As u → c have E → pc.

◦ For photons u = c, m = 0, so E = pc. Define
photon momentum p, in direction of propaga-
tion, from Planck’s photon energy E = hf

p = hf/c. (6.7)

• Note, since E2 − p2c2 = m2c4, this must be invari-
ant under Lorentz transformations, but not E and
p separately since they depend on u.
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• The law of Mass-Energy conservation states that E
before and after an interaction must be the same
(within an inertial frame of reference).

◦ Fusion: Suppose two particles of mass m are
moving toward each other with velocities v and
−v, relative to the centre of mass frame, fuse
together after the collision:

◦ Classically, the initial total kinetic energy is
K = 2mv2/2, and the final K = 0.

◦ Relativistically, have E = 2γmc2 = Mc2, i.e.

M = 2γm ≥ 2m. (6.8)

◦ Define ∆M ≡ M − 2m = M(γ − 1)/γ =
2m(γ − 1) = 2K/c2, using Eq. 6.4.

◦ Fission: A massM breaks into two equal parts
of m = 0.4M with velocities v and −v then

Mc2 = 2γ0.4Mc2, γ =
1

0.8
, v = 0.6c.

• Since E is conserved within a frame, and p2c2 =
E2−m2c4, have p automatically conserved as well!
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