

Imaging reaction dynamics of $\text{O}^- + \text{CH}_3\text{I}$ reactive scattering

Arnab Khan^{*1,2}, Atilay Ayasli², Tim Michaelsen², Thomas Gstir², Milan Ončák², and Roland Wester²

*Presenting author

¹arnabk@iiserb.ac.in, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India

² Institute für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25/3, Innsbruck, Austria

We report on ion-molecule reactive scattering studies of the $\text{O}^- + \text{CH}_3\text{I}$ system at collision energies between 0.3-2.0 eV. Here, we combine state-of-the-art crossed-beam velocity map imaging and quantum chemistry calculations to understand the dynamics for the formations of the different ionic products such as I^- , OI^- , CH_2I^- , and CHI^- . The velocity- and angle-differential cross-sections have been obtained for all collision energies. It is observed that reaction outcome depends solely on the collision energy and angle of attack of the O^- ion. Here, the predominant product ion, for all collision energies, is I^- (about 70-80%). We can see that throughout all investigated collision energies, an indirect mechanism dominates in the I^- product distributions. In the experimental velocity- and angular-distribution plots, this process manifests as a uniform I^- distribution without any angular preference of the I^- ions as an isotropic distribution. Our calculated minimum energy pathway for the $\text{O}^- + \text{CH}_3\text{I}$ system shows that the front-side attack does not lead to the direct formation of I^- . Instead, it proceeds via the intermediate OI^- or hypoiodite formation channel. The other two observed channels are proton transfer (CH_2I^- formation) and combined hydrogen/proton transfer (CHI^- formation). The velocity- and angle-differential cross-sections for these channels are dominated by forward scattered events. However, for the CHI^- channel, the data show a lower product velocity than for CH_2I^- channel. This indicates a higher internal excitation for the hydrogen/proton transfer reaction than the single proton transfer reaction. Further, our results suggest the combined hydrogen/proton transfer process proceeds via a two-step process.

References:

1. Khan, A., Ayasli, A., Michaelsen, T., Gstir, T., Ončák, M., & Wester, R. Imaging the Atomistic Dynamics of Single Proton Transfer and Combined Hydrogen/Proton Transfer in the $\text{O}^- + \text{CH}_3\text{I}$ Reaction. *The Journal of Physical Chemistry A* (2022).
2. Ayasli, A., Khan, A., Michaelsen, T., Gstir, T., Ončák, M., & Wester, R. Imaging frontside and backside attack mechanisms in radical ion-molecule reactive scattering (To be submitted).