

Unique properties of *para*-hydrogen matrix isolation: bevel-gear type rotation and hydrogen tunneling reactions

Yuan-Pern Lee^{1,2*}

*presenting author

¹yplee@nycu.edu.tw, Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan

²Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan

Solid *para*-hydrogen (*p*-H₂) has emerged as a novel host for matrix-isolation studies. Due to its unique properties, this quantum solid has revealed several applications unachievable with noble-gas matrix-isolation techniques, such as the presence of single-axis internal rotation, production of free radicals upon photolysis *in situ*, and hydrogen tunneling reactions.^{1,2}

Whether the structure of C₆H₆X (X = halogen) is an open or a bridged form has been debated. We previously made use of the diminished cage effect of *p*-H₂ to generate Cl atoms from *in situ* photolysis of Cl₂ to react with C₆H₆ to produce C₆H₆Cl.³ The observed IR spectra clearly indicated that C₆H₆Cl has a η_1 structure with σ -bonding. Unlike the C₆H₆Cl σ -complex, the observed infrared spectrum from Br + C₆H₆ indicates that C₆H₆Br is an open-form π -complex. Furthermore, lines of the two CH out-of-plane bending modes associated with mainly even- and odd-numbered carbons, predicted near 672 and 719 cm⁻¹, merged into a broad line at 697.3 cm⁻¹, indicating that these modes become nearly equivalent as Br migrates from one carbon atom to another. Quantum-chemical calculations support that the benzene ring performs a bevel-gear-type rotation with respect to Br. Furthermore, observation of only *trans*-*ortho*- and *trans*-*para*-C₆H₆Br₂ suggests that this gear-type motion allows the additional Br atom to attack C₆H₆Br only from the opposite side of the Br atom in C₆H₆Br.

H-atom tunneling reactions play important roles in astrochemistry, but an understanding of these reactions is still in its infancy. We have investigated reactions of H atoms with astronomically relevant species such as methanol, formamide, methyl formate, acetamide, acetic acid, glycine, methyl amine, and N-methyl formamide HC(O)NHCH₃ in solid *p*-H₂. Among them, H-abstraction and H-addition reactions of formamide or methyl amine form a dual cycle that chemically link HC(O)NH₂ and HNCO or CH₃NH₃ and CH₂NH, respectively. In reaction H + *trans*-NMF, surprisingly, isomer *cis*-NMF, which has higher energy, increased continuously in darkness, demonstrating a previously overlooked and seemingly unlikely isomerization process. These results indicate that, unlike the dual cycle of H-abstraction and H-addition channels chemically linking formamide and HNCO, H addition to CH₃NCO produced only *cis*-•C(O)NH(CH₃) radical that led to the formation of *cis*-NMF via further H addition.

References:

1. Tsuge, M., Lee, Y.-P., Spectroscopy of molecules confined in solid *para*-hydrogen, in *Molecular and Laser Spectroscopy*, V. P. Gupta, Y. Ozaki, Eds., Elsevier: Amsterdam, Netherlands, Vol. 2, 167–215 (2020).
2. Haupa, K. A., Joshi, P. R., Lee, Y.-P., Hydrogen-atom tunneling reactions in solid *para*-hydrogen and their applications to astrochemistry, *J. Chin. Chem. Soc.* **69**, 1159–1173 (2022).
3. Bahou, M., Witek, H., Lee, Y.-P., Infrared identification of the σ -complex of Cl-C₆H₆ in the reaction of chlorine atom and benzene in solid *para*-hydrogen. *J. Chem. Phys.* **138**, 074310 (2013).
4. Tsai, S.-Y., Haupa, K. A., Lee, Y.-P., Hydrogen-atom-assisted uphill isomerization of N-methylformamide in darkness, *J. Am. Chem. Soc.* **144**, 12339–12346 (2022).