

High-resolution mid-infrared time-resolved dual-comb spectroscopy

P.-L. Luo ^{1*}

¹ pllou@gate.sinica.edu.tw, Institute of Atomic and Molecular Sciences Academia Sinica, Taipei 106319, Taiwan.

Dual-comb spectroscopy, a Fourier transform spectroscopic technique based on two frequency combs at slightly different repetition rates, enables broadband molecular fingerprinting with both high-resolution and high spectral sampling rate. Here, a new approach to high-resolution time-resolved spectroscopy by utilizing mid-infrared dual-comb spectrometers will be reported. The mid-infrared dual-comb sources are constructed based on electro-optic frequency comb and the difference frequency generation techniques. The time-resolved infrared absorption spectra can be measured with Doppler-limited resolution at microsecond time resolution to determine the pressure broadening coefficient of the simplest Criegee intermediate (CH_2OO).¹ Moreover, the yields and formation mechanisms of OH and HO_2 radicals formed from the reactions involving the simplest Criegee intermediate are also investigated via direct determination of the CH_2OO , CH_2O , OH, and HO_2 with synchronized two-color time resolved dual-comb spectroscopy.²

References:

1. Luo, P.-L. Long-wave mid-infrared time-resolved dual-comb spectroscopy of short-lived intermediates. *Opt. Lett.* **45**, 6791–6794 (2020).
2. Luo, P.-L.; Chen, I.-Y. Synchronized two-color time-resolved dual-comb spectroscopy for quantitative detection of HO_x radicals formed from Criegee intermediates. *Anal. Chem.* **94**, 5752–5759 (2022).