

Rotational Excitation of Asymmetric Top Molecules Induced by An Intense Femtosecond Laser Field

Isamu Kikuchi,¹ Shinichi Fukahori,^{1,2} and Hirokazu Hasegawa^{1,2*}

¹Departoment of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

²Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

*chs36@mail.ecc.u-tokyo.ac.jp

The rotational wave packet, which is a coherent superposition state of rotational eigenstates, can be created by the anisotropic polarizability interaction, i.e., the impulsive rotational Raman excitation induced by an intense nonresonant femtosecond laser field. The time evolution of the rotational wave packet exhibits transient and periodic molecular alignment and anti-alignment. Research on such rotational dynamics has been mainly focused on linear molecules because of the simplicity and regularity of rotational energy structure [1]. On the other hand, few studies on the rotational dynamics of asymmetric top molecules induced by the intense laser field were reported [2]. In this work, we investigate the rotational motion of a simpler, lighter, and asymmetric top H_2O molecule.

In our experiment, an output from a Ti:Sapphire femtosecond laser system (784 nm, 130 fs, 5 mJ/pulse, 10 Hz) is introduced into a Michelson interferometer to generate pump and probe pulses. A mixture gas of H_2O vapor (2 kPa), N_2 (20 kPa) as a reference, and Ne (180 kPa) as a buffer is expanded into a vacuum chamber equipped with a time-of-flight mass spectrometer (TOF-MS) as a supersonic molecular beam. The pump and probe polarizations are set to be parallel to the TOF axis. The yield of H_2O^+ is measured as a function of the delay between the pump and probe pulses.

Figure 1 shows the ion yields of H_2O^+ and N_2^+ as a function of the delay. Clear periodic peaks at multiples of a quarter of the rotational period, $T_{\text{rot}} = 8.4$ ps, are observed as a rotational motion for N_2^+ . The increase (decrease) of N_2^+ yield from the baseline means that the molecular axis is aligned parallel (perpendicular) to the polarization direction because the ionization probability depends on the angle between the molecular axis and the polarization. The angular dependence of the ionization probability reflects the shape of the molecular orbital [3], from which the electron is ejected. The N_2 molecule ionizes easier when the molecular axis and the polarization of the probe pulse are parallel than perpendicular because the observed N_2^+ is created by the electron ejection from the HOMO, $3\sigma_g$ orbital.

On the other hand, the H_2O^+ yield does not show periodic peaks due to the irregularity of the rotational energy structure. By comparing the observed signal with the calculation, we found that the H_2O^+ ion is generated by the electron ejection from the HOMO. In addition, we determined the polarizability of H_2O vapor, for which the two different values have been reported [4].

References:

1. Y. Ohshima, and H. Hasegawa, *Int. Rev. Phys. Chem.*, **29**, 619–663 (2010).
2. E. Peronne, M.D. Poulsen, C.Z. Bisgaard, H. Stapelfeldt, and T. Seideman, *Phys. Rev. Lett.* **91**, 043003 (2003).
3. S. Fukahori, A. Iwasaki, K. Yamanouchi, and H. Hasegawa, *J. Chem. Phys.*, **156**, 094307 (2022).
4. W.F. Murphy, *J. Chem. Phys.*, **67**, 5877 (1977); P. Zalden et al., *Nat. Commun.*, **9**, 2142 (2018).

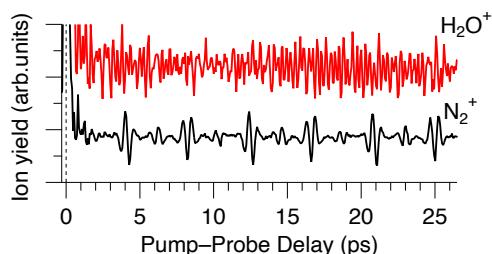


Fig.1 The delay dependence of the H_2O^+ and N_2^+ yields