$$ ct' = \gamma\left(ct-\frac{v}{c}x\right), \ x'=\gamma\left(x-\frac{v}{c}ct\right) $$
$$ ct = \gamma\left(ct'+\frac{v}{c}x'\right), \ x=\gamma\left(x'+\frac{v}{c}ct'\right) $$
$$ \frac {v} {c} = \tan\theta, \ \ \ \gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} $$
Origins \(O, O'\) coincide at \(ct=ct'=0\). Axes have units
of length (e.g. light-years).
| \(\text{label}\) |
\((x, ct)\) |
\((x', ct')\) |
| A |
({{data.Ax0}}, {{data.At0}}) |
({{data.Ax1}}, {{data.At1}}) |
| B |
({{data.Bx0}}, {{data.Bt0}}) |
({{data.Bx1}}, {{data.Bt1}}) |
| C |
({{data.Cx0}}, {{data.Ct0}}) |
({{data.Cx1}}, {{data.Ct1}}) |
| D |
({{data.Dx0}}, {{data.Dt0}}) |
({{data.Dx1}}, {{data.Dt1}}) |
| E |
({{data.Ex0}}, {{data.Et0}}) |
({{data.Ex1}}, {{data.Et1}}) |
| F |
({{data.Fx0}}, {{data.Ft0}}) |
({{data.Fx1}}, {{data.Ft1}}) |
| G |
({{data.Gx0}}, {{data.Gt0}}) |
({{data.Gx1}}, {{data.Gt1}}) |