Interactive Minkowski Diagram

$$ ct' = \gamma\left(ct-\frac{v}{c}x\right), \ x'=\gamma\left(x-\frac{v}{c}ct\right) $$ $$ ct = \gamma\left(ct'+\frac{v}{c}x'\right), \ x=\gamma\left(x'+\frac{v}{c}ct'\right) $$ $$ \frac {v} {c} = \tan\theta, \ \ \ \gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} $$
\(v/c\) \(\gamma\) \(\theta \text{ (deg)} \)
{{data.velocity}} {{data.lorentz}} {{data.angle}}

Origins \(O, O'\) coincide at \(ct=ct'=0\). Axes have units of length (e.g. light-years).

Click to place, or remove, a labeled point.

\(\text{label}\) \((x, ct)\) \((x', ct')\)