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The primary motivation is to provide accurate atomic and
molecular collision data for science and industry

@ Astrophysics

o Fusion research

o Fluorescent lighting

o Nanolithography

o Neutral antimatter formation

o Medical: cancer imaging and therapy
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https://atom.curtin.edu.au/igor/AtomLab/11550_Solar_Wind_Charge_Exchange_appletv.m4v

Collisions between particles on the atomic scale are difficult to
calculate:

o Governed by the Laws of Quantum Mechanics

@ Countably infinite discrete target spectrum
@ Uncountably infinite target continuum
Q Charged particles interact at infinite distances
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Collisions between particles on the atomic scale are difficult to
calculate:
o Governed by the Laws of Quantum Mechanics
@ Countably infinite discrete target spectrum
@ Uncountably infinite target continuum
Q@ Charged particles interact at infinite distances
o Close-coupling bypasses these problems!

@ Finite number of square-integrable target states
Q Unitary excitation of —ve- and +ve-energy states
O Effectively, only one charged particle at infinity
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Convergent close-coupling theory

Target structure

Use complete Laguerre basis £0)(r) oc exp(—A,r):
o “one-electron” (H, Ps, Li,...,Cs, Hy)

N,

one(r) =D CRELN(r),

n'=1

-
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Use complete Laguerre basis 5,(,2)(r) o exp(—A¢r):
o “one-electron” (H, Ps, Li,...,Cs, HJ)

¢n€ Z Crrrpéér(;\é)
n=1
9 “two-electron” (He, Be,..., Hg, Ne, ..., Xe, H,, H,0)
Onis(r1, 12) = D Cred € (1)E(r2),

ﬂ/,ﬂ”
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Use complete Laguerre basis ff,?)(r) o exp(—A¢r):
o “one-electron” (H, Ps, Li,...,Cs, HJ)

¢n€ Z C ,(,3\2

o “two-electron” (He, Be,..., Hg, Ne, ..., Xe, Hz, H20)

7 A
anZs r17r2 Z g@g n/g/ r1 5,(7//)Kll(r2)

n/ n//
o Diagonalise the target (FCHF) Hamiltonian
(¢f|Hr|pi) = erdq, 1, F=1,...,N
Atomic and Molecular Collision Calculations
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o H s-state energies for Laguerre bases Ny with \g = 1
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Electron scattering

o Electron-atom/molecule wavefunction:

N
W)~ Ay = A [¢nFa). (1)
n=1

o A leads to non-uniqueness of Fp;
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o Electron-atom/molecule wavefunction:

N
n=1

o A leads to non-uniqueness of F;
o Solve for Ty = (ke VW) at E = ¢; + k?/2,

(ktof| T|piki) = (ktps|V|oik)
z K| V|gok) (K| T 0iK;)
+ d3k< fPf n n i .
>/

E+i0—e,—K2/2

Q IimN_>oo<kf¢f‘T’¢jki> =0 for kf2/2 <egfie. e > E/2
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o Electron-atom/molecule wavefunction:

N
n=1

o A leads to non-uniqueness of F;
o Solve for Ty = (ke VW) at E = ¢; + k?/2,

(ktof| T|piki) = (ktps|V|oik)
- k64 V|6nk) (Ko T|ik))
+ d3k< fPf n n i .
>/

E+i0—e,—K2/2

Q IimN_>oo<kf¢f‘T’¢jki> =0 for kf2/2 <egfie. e > E/2
o Excitation: ofi = ﬁ;|<kf¢f‘T‘¢,k,>‘2, er<0
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o Electron-atom/molecule wavefunction:

N
n=1

o A leads to non-uniqueness of F;
o Solve for Ty = (ke VW) at E = ¢; + k?/2,

(ktor| T|oiki) = (Kropr| V|pik))
N

3, (Kt VIgnk) (Kon| T|diKi)

+;/d K ETi0—c,—Kj2
Q IimN_>oo<kf¢f‘T’¢jki> =0 for kf2/2 <egfie. e > E/2

o Excitation: ofi = ﬁ;|<kf¢f‘T‘¢,k,>‘2, er<0
o lonization: o5 = |(q\7)|¢r) (kror| T|diki) 2, 0 < er < £
Atomic and Molecular Collision Calculations




o e~ -H total ionization cross section and spin asymmetry
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[I. Bray et al., PRL 121, 203401 (2018)]
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o e -He(1'S) total ionization cross section
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o e -He(239S) total ionization cross section
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[Fursa and Bray, JPB 36, 1663 (2003)]
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o e -He(239S) total ionization cross section
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Fully differential ionization geometry

Einc:
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Seatong g B Gog) ; Seatoig gl B (G

[X. Ren et al., PRA 83, 052711 (2011)]
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@ e -H, collisions: MCCC-calculated total cross section
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@ e -H, collisions: MCCC-calculated total ionization
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[M. Zammit et al., PRL 116, 233201 (2016)]
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o e -H, collisions: b3%} excitation
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[Zammit et al., PRA 95, 022708 (2017)]
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o e -H, collisions: b*L excitation
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[Zawadski et al., PRA 97 050702(R) (2018)]
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o e -H, collisions: b3%} excitation
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0 e -Hx(X'L}) excitation in the 2L, symmetry
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@ CCC valid at all energies for (anti)electrons, photons,
(anti)protons scattering on quasi one- and two- electron
atoms and molecules, as well as inert gases.

@ Atomic CCC available: https://amosgateway.org.
o Data available: LXCAT, mccc-db.org, CCC-WWW.
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@ CCC valid at all energies for (anti)electrons, photons,
(anti)protons scattering on quasi one- and two- electron
atoms and molecules, as well as inert gases.

@ Atomic CCC available: https://amosgateway.org.
o Data available: LXCAT, mccc-db.org, CCC-WWW.
To-do list

o Implementing general structure code of Zatsarinny; e*-C
[Mori et al. PRA 107 032817 (2023)]

o Quasi one- and two-electron hydrides LiH, LiH", BeH;
HeH™ [Scarlett et al. PRA 106 042818 (2022)]

@ Dissociative electron attachment to H,
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