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Motivation

The primary motivation is to provide accurate atomic and

molecular collision data for science and industry

Astrophysics

Fusion research

Fluorescent lighting

Nanolithography

Neutral antimatter formation

Medical: cancer imaging and therapy
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https://atom.curtin.edu.au/igor/AtomLab/11550_Solar_Wind_Charge_Exchange_appletv.m4v


Challenges

Collisions between particles on the atomic scale are difficult to

calculate:

Governed by the Laws of Quantum Mechanics
1 Countably infinite discrete target spectrum
2 Uncountably infinite target continuum
3 Charged particles interact at infinite distances

Close-coupling bypasses these problems!
1 Finite number of square-integrable target states
2 Unitary excitation of −ve- and +ve-energy states
3 Effectively, only one charged particle at infinity
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Convergent close-coupling theory
Target structure

Use complete Laguerre basis ξ
(λ)
nℓ (r) ∝ exp(−λℓr):

“one-electron” (H, Ps, Li,. . . ,Cs, H+
2 )

φnℓ(r) =

Nℓ∑
n′=1

Cn′

nℓξ
(λ)
n′ℓ (r),

“two-electron” (He, Be,. . . , Hg, Ne, . . . , Xe, H2, H2O)

φnℓs(r1, r2) =
∑
n′,n′′

Cn′n′′

nℓs ξ
(λ)
n′ℓ′(r1)ξ

(λ)
n′′ℓ′′(r2),

Diagonalise the target (FCHF) Hamiltonian

〈φf |HT|φi〉 = εf δfi , i , f = 1, . . . ,N
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Target structure

H s-state energies for Laguerre bases N0 with λ0 = 1
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Electron scattering

Electron-atom/molecule wavefunction:

|Ψ
(+)
i 〉 ≈ AIN |ψ

(+)
i 〉 = A

N∑
n=1

|φnFni〉. (1)

A leads to non-uniqueness of Fni

Solve for Tfi ≡ 〈k fφf |V |Ψ
(+)
i 〉 at E = εi + ki

2/2,

〈k fφf |T |φik i〉 = 〈k fφf |V |φik i〉

+
N∑

n=1

∫
d3k

〈k fφf |V |φnk〉〈kφn|T |φik i〉

E + i0 − εn − k2/2
. (2)

limN→∞〈k fφf |T |φik i〉 = 0 for k2
f /2 < εf i.e. ǫf > E/2.

Excitation: σfi ≡ kf

ki
|〈k fφf |T |φik i〉|

2, εf < 0

Ionization: σfi ≡ |〈q
(−)
f |φf 〉〈k fφf |T |φik i〉|

2, 0 < εf ≤
E
2
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Electron scattering on atomic hydrogen

e−-H total ionization cross section and spin asymmetry
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Electron scattering on He(11S)

e−-He(11S) total ionization cross section
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Electron scattering on He(23S)

e−-He(23S) total ionization cross section
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Electron scattering on He(23S)

e−-He(23S) total ionization cross section
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Fully differential ionization geometry
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71 eV e−-He fully differential single ionization
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Electron scattering on molecular hydrogen

e−-H2 collisions: MCCC-calculated total cross section
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Electron scattering on molecular hydrogen

e−-H2 collisions: MCCC-calculated total ionization
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Electron scattering on molecular hydrogen

e−-H2 collisions: b3Σ+
u excitation
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Electron scattering on molecular hydrogen

e−-H2 collisions: b3Σ+
u excitation

[Zawadski et al., PRA 97 050702(R) (2018)]
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Electron scattering on molecular hydrogen

e−-H2 collisions: b3Σ+
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Vibrational-Electronic MCCC

e−-H2(X
1Σ+

g ) excitation in the 2Σg symmetry
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Concluding remarks

CCC valid at all energies for (anti)electrons, photons,

(anti)protons scattering on quasi one- and two- electron

atoms and molecules, as well as inert gases.

Atomic CCC available: https://amosgateway.org.

Data available: LXCAT, mccc-db.org, CCC-WWW.

To-do list

Implementing general structure code of Zatsarinny; e+-C

[Mori et al. PRA 107 032817 (2023)]

Quasi one- and two-electron hydrides LiH, LiH+, BeH+;

HeH+ [Scarlett et al. PRA 106 042818 (2022)]

Dissociative electron attachment to H2
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