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Motivation

The primary motivation is to provide accurate atomic and
molecular collision data for science and industry

Astrophysics

Fusion research

Fluorescent lighting

Nanolithography

Neutral antimatter formation

Medical: cancer imaging and therapy
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Convergent close-coupling theory

Motivation

Challenges

Challenges

Collisions between particles on the atomic scale are
difficult to calculate:

Governed by the Laws of Quantum Mechanics
1 Countably infinite discrete target spectrum
2 Uncountably infinite target continuum
3 Charged particles interact at infinite distances

Close-coupling bypasses these three problems!

Finite number of square-integrable target states

Effectively, only one charged particle at infinity

Unitary excitation of −ve- and +ve-energy states
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Introduction

Convergent close-coupling theory

Electron-atom/molecule scattering

Computational details

Convergent close-coupling theory

Use complete Laguerre basis ξ
(λ)
nℓ (r) ∝ exp(−λr):

“one-electron” (H, Ps, Li,. . . ,Cs, H+
2 )

φnℓ(r) =

Nℓ∑
n′=1

C
n′

nℓξ
(λ)
n′ℓ (r),

“two-electron” (He, Be,. . . , Hg, Ne, . . . , Xe, H2, H2O)

φnℓs(r1, r2) =
∑
n′,n′′

C
n′n′′

nℓs ξ
(λ)
n′ℓ′(r1)ξ

(λ)
n′′ℓ′′(r2),

Diagonalise the target (FCHF) Hamiltonian

〈φf |HT|φi〉 = εf δfi , i , f = 1, . . . ,N
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Convergent close-coupling theory

Electron-atom/molecule scattering

Computational details

H energies εf for Laguerre bases: N0 = 10, 15, 20, 25
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Computational details

Electron-atom/molecule scattering

Electron-atom/molecule wavefunction is:

|Ψ
(+)
i

〉 ≈ AIN |ψ
(+)
i

〉 = A
N∑

n=1

|φnFni〉. (1)

A leads to non-uniqueness of Fni

Solve for Tfi ≡ 〈k fφf |V |Ψ
(+)
i

〉 at E = εi + ki
2/2,

〈k fφf |T |φik i〉 = 〈k fφf |V |φik i〉

+
N∑

n=1

∫
d

3
k
〈k fφf |V |φnk〉〈kφn|T |φik i〉

E + i0 − εn − k2/2
. (2)

limN→∞〈k fφf |T |φik i〉 = 0 for k2
f
/2 < εf i.e. ǫf > E/2.

Cross sections: σfi = kf

ki
|〈k fφf |T |φik i〉|

2.
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Electron-atom/molecule scattering

Computational details

Electron-impact ionization of hydrogen

total ionization cross section and spin asymmetry
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Electron-atom/molecule scattering

Computational details

Electron scattering on molecular hydrogen

e−-H2 collisions: MCCC-calculated total cross section
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Electron scattering on molecular hydrogen

e−-H2 collisions: MCCC-calculated total ionization
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Electron scattering on molecular hydrogen

e−-H2 collisions: b3Σ+
u excitation
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Electron-atom/molecule scattering

Computational details

Computational details

1 Calculate four-dimensional array 〈kfφf |V |φiki〉

2 Write T (N) = V + VGT (N) as (I − VG)T (N) = V , and
solve as A(θ)x = b(θ) to yield unique x for θ 6= 0

3 Increase N until 〈kfφf |T
(N)|φiki〉 converges

Early 1990s: single CPU; $60,000 for 512Mb of RAM

Used LAPACK

Matrix size: 10, 000 × 10, 000

Mid 1990s: implemented OpenMP on “symmetric
multiprocessing” architecture

No rewrite of code

More RAM

Matrix size: 100, 000 × 100, 000
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Electron-atom/molecule scattering

Computational details

Next generations of parallelisation:

Early 2010s: implemented MPI to split the matrix
calculation across “loosely connected fat nodes”

Use ScaLAPACK across all nodes to solve Ax = b

Matrix size: 500, 000 × 500, 000 and increasing

Made molecular targets accessible

GPUs are more energy-efficient than CPUs;
Implementing NVIDIA and AMD GPU acceleration

Order of magnitude speedup for 〈kfφf |V |φiki〉
Utilising OpenMP and OpenACC directives or

HIP/CUDA

Paying attention to data flow (CPU and GPU) is vital

For GPUs SLATE replaces ScaLAPACK

Scaling with nodes is perfect for V , poor for Ax = b

Partnerships of HPC staff and scientists make for
great new science!
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Electron-atom/molecule scattering

Computational details

Concluding remarks

CCC valid at all energies for (anti)electrons, photons,
(anti)protons scattering on quasi one- and two-
electron atoms and molecules, as well as inert gases.

Atomic CCC available: https://amosgateway.org.

Data available: LXCAT, mccc-db.org, CCC-WWW.

To-do list

GPU acceleration for multi-electron atoms

GPU acceleration for molecular targets

Implement ever more complicated collision systems
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