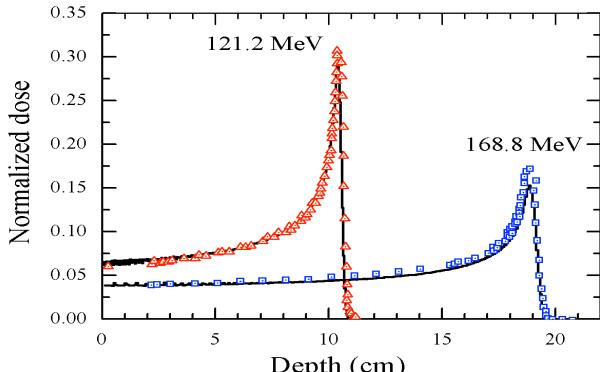


Propagation of swift protons in liquid water and generation of secondary electrons in biomaterials

Rafael Garcia-Molina ^{* 1}, Pablo de Vera ^{† 2}, Maurizio Dapor ^{‡ 3}, Isabel Abril ^{§ 4}

^{*} Departamento de Física - CIOyN, Universidad de Murcia, E-30100 Murcia, Spain.

[†] School of Mathematics and Physics, Queen's University Belfast, BT7 1NN Belfast, Northern Ireland, UK.

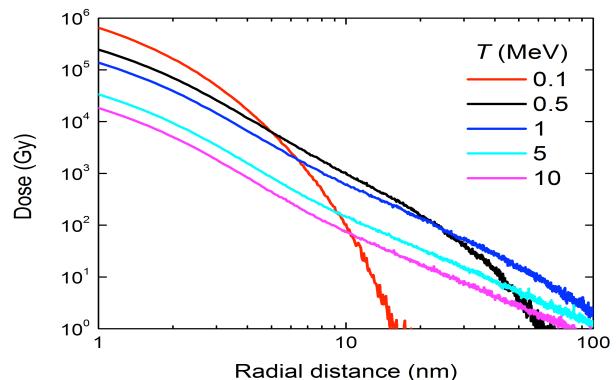

[‡] European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Bruno Kessler Foundation, and Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), I-38123 Trento, Italy.

[§] Departament de Física Aplicada, Universitat d'Alacant, E-03080 Alacant, Spain.

Synopsis We have simulated the energy deposited by swift protons at different depths in liquid water (the most abundant material in living tissues). The angular and energetic distributions of the secondary electrons generated in biomaterials by these incident protons are reliably calculated by using the dielectric formalism. The energy deposited around the proton tracks by secondary electron cascades is computed by a Monte Carlo simulation.

The use of swift proton beams for cancer treatment is a promising technique that requires a deep knowledge of the energy deposited in biological materials, as well as its transport by the generated secondary electrons [1,2].

A detailed simulation of the transport of protons in biomaterials is performed by the SEICS code [3], obtaining depth-dose curves of proton beams in liquid water as shown in Fig. 1.


Figure 1. Measured (symbols [4]) and simulated (lines [5]) depth-dose curves of protons in water.

The energy and angular distributions of secondary electrons generated by proton impact in biomaterials at depths around the Bragg peak can be reliably calculated in the framework of the dielectric formalism [6].

The transport of all generated secondary electrons are simulated by the SEED code [7], which takes into account the main interactions between the electrons and target, paying special attention to its condensed phase nature. The simulated radial doses around proton tracks in PMMA for several energies are shown in Fig. 2.

Combination of realistic proton and electron

trajectories in condensed matter, accounting for appropriate electron production and interaction cross sections, yields reliable distributions of energy deposition on the nanoscale, which determine the biological outcomes of irradiation.

Figure 2. Radial dose deposited by secondary electrons along the track of protons incident with energy T in PMMA, as obtained with the SEED code.

References

- [1] Dz. Belkic (ed.) 2013 *Theory of Heavy Ion Collision Physics in Hadron Therapy* (Academic Press)
- [2] A. Solov'yov (ed.) 2017 *Nanoscale Insights into Ion-Beam Cancer Therapy* (Springer International)
- [3] R. Garcia-Molina *et al.* 2011 *Phys. Med. Biol.* **56** 6475
- [4] X. Zhang *et al.* 2011 *Phys. Med. Biol.* **56** 7725
- [5] P. de Vera *et al.* 2017 Realistic secondary electron energy spectra generated around the Bragg peak by proton beams in biomaterials of relevance in hadron therapy (submitted)
- [6] M. Dapor *et al.* 2017 Energy deposition around swift proton tracks in polymethylmethacrylate (PMMA): how much and how far (submitted)
- [7] M. Dapor 2017 *Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization*, 2nd ed. Vol. 257 (Springer Tracts in Modern Physics)

¹ E-mail: rgm@um.es

² E-mail: p.devera@qub.ac.uk

³ E-mail: dapor@ectstar.eu

⁴ E-mail: ias@ua.es